Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 8
[out of range]
>
<
1 - 8
[out of range]
>
page
|<
<
(27)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div111
"
type
="
section
"
level
="
1
"
n
="
38
">
<
p
>
<
s
xml:id
="
echoid-s1562
"
xml:space
="
preserve
">
<
pb
o
="
27
"
file
="
0065
"
n
="
65
"
rhead
="
DE IIS QVAE VEH. IN AQVA.
"/>
æqualis r ψ: </
s
>
<
s
xml:id
="
echoid-s1563
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1564
"
xml:space
="
preserve
">ducatur ψ r perpendicularis ad b d, quæ
<
lb
/>
posſit dimidium eius, quod ipſis k r, ψ b, continetur. </
s
>
<
s
xml:id
="
echoid-s1565
"
xml:space
="
preserve
">Dico
<
lb
/>
portionem in humidum demiſſam adeo, ut baſis ipſius to-
<
lb
/>
ta ſit in humido, ita conſiſtere, ut axis cum ſuperficie humi
<
lb
/>
di faciat angulum angulo b æqualem. </
s
>
<
s
xml:id
="
echoid-s1566
"
xml:space
="
preserve
">Demittatur enim
<
lb
/>
portio in humidum, ſicuti dictum eſt; </
s
>
<
s
xml:id
="
echoid-s1567
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1568
"
xml:space
="
preserve
">axis cum humidi
<
lb
/>
ſuperficie non faciat angulum æqualẽ ipſi b, ſed primo ma
<
lb
/>
iorem: </
s
>
<
s
xml:id
="
echoid-s1569
"
xml:space
="
preserve
">ſecta autem ipſa plano per axem, recto ad ſuperfi-
<
lb
/>
ciem humidi, ſectio portionis ſit a p o l rectanguli coni ſe-
<
lb
/>
ctio; </
s
>
<
s
xml:id
="
echoid-s1570
"
xml:space
="
preserve
">ſuperficiei humidi ſectio c i; </
s
>
<
s
xml:id
="
echoid-s1571
"
xml:space
="
preserve
">ſitq, axis portionis, & </
s
>
<
s
xml:id
="
echoid-s1572
"
xml:space
="
preserve
">ſe
<
lb
/>
ctionis diameter n o, quæ fecetur in punctis ω t, ut prius. </
s
>
<
s
xml:id
="
echoid-s1573
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1574
"
xml:space
="
preserve
">
<
lb
/>
ducantur y p quidem ipſi ci æquidiſtans, contingensq; </
s
>
<
s
xml:id
="
echoid-s1575
"
xml:space
="
preserve
">ſe
<
lb
/>
ctionem in p; </
s
>
<
s
xml:id
="
echoid-s1576
"
xml:space
="
preserve
">m p uero æquidiſtans n o: </
s
>
<
s
xml:id
="
echoid-s1577
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1578
"
xml:space
="
preserve
">p s ad axem
<
lb
/>
perpendicularis. </
s
>
<
s
xml:id
="
echoid-s1579
"
xml:space
="
preserve
">Quoniam igitur axis portionis cum ſu-
<
lb
/>
perficie humidi facit angulum maiorem angulo b; </
s
>
<
s
xml:id
="
echoid-s1580
"
xml:space
="
preserve
">erit & </
s
>
<
s
xml:id
="
echoid-s1581
"
xml:space
="
preserve
">
<
lb
/>
angulus s y p angulo b maior. </
s
>
<
s
xml:id
="
echoid-s1582
"
xml:space
="
preserve
">quare quadratum p s ad
<
lb
/>
quadratum s y maiorem habet proportionem, quàm qua
<
lb
/>
dratum ψ e ad quadratum ψ b: </
s
>
<
s
xml:id
="
echoid-s1583
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1584
"
xml:space
="
preserve
">propterea _K_ r ad s y ma
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0065-01
"
xlink:href
="
note-0065-01a
"
xml:space
="
preserve
">B</
note
>
iorem habet, quàm dimidium ipſius κ r ad ψ b. </
s
>
<
s
xml:id
="
echoid-s1585
"
xml:space
="
preserve
">ergo s y
<
lb
/>
minor eſt, quam dupla ψ b; </
s
>
<
s
xml:id
="
echoid-s1586
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1587
"
xml:space
="
preserve
">s o minor, quam ψ b. </
s
>
<
s
xml:id
="
echoid-s1588
"
xml:space
="
preserve
">quare
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0065-02
"
xlink:href
="
note-0065-02a
"
xml:space
="
preserve
">C</
note
>
s ω maior, quàm r ψ; </
s
>
<
s
xml:id
="
echoid-s1589
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1590
"
xml:space
="
preserve
">p h maior, quàm f. </
s
>
<
s
xml:id
="
echoid-s1591
"
xml:space
="
preserve
">Itaque quoniã
<
lb
/>
portio ad humidum in grauitate eam habet proportionẽ,
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0065-03
"
xlink:href
="
note-0065-03a
"
xml:space
="
preserve
">D</
note
>
quam exceſſus, quo quadratum b d excedit quadratum f q
<
lb
/>
ad quadratum b d: </
s
>
<
s
xml:id
="
echoid-s1592
"
xml:space
="
preserve
">quam uero proportionem habet por-
<
lb
/>
tio ad humidum in grauitate, eandem pars ipſius demerſa
<
lb
/>
habet ad totam portionẽ: </
s
>
<
s
xml:id
="
echoid-s1593
"
xml:space
="
preserve
">ſequitur partẽ demerſam ad to
<
lb
/>
tam portionem, eam proportionem habere, quã exceſſus,
<
lb
/>
quo quadratum b d excedit quadratũ f q, ad quadratū b d.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s1594
"
xml:space
="
preserve
">habebit ergo tota portio ad eam, quæ eſt extra humidum
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0065-04
"
xlink:href
="
note-0065-04a
"
xml:space
="
preserve
">E</
note
>
proportionem eandem, quam quadratum b d ad quadra-
<
lb
/>
tum f q. </
s
>
<
s
xml:id
="
echoid-s1595
"
xml:space
="
preserve
">Sed quam proportionem habet tota portio ad eã,
<
lb
/>
quæ eſt extra humidum, eandem habet quadratum n o ad
<
lb
/>
quadratum p m. </
s
>
<
s
xml:id
="
echoid-s1596
"
xml:space
="
preserve
">ergo p m ipſi f q æ qualis etit. </
s
>
<
s
xml:id
="
echoid-s1597
"
xml:space
="
preserve
">demonſtra
<
lb
/>
ta eſt autem p h maior, quàm f: </
s
>
<
s
xml:id
="
echoid-s1598
"
xml:space
="
preserve
">quare m h minor </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>