Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 8
[out of range]
>
<
1 - 8
[out of range]
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div216
"
type
="
section
"
level
="
1
"
n
="
73
">
<
p
>
<
s
xml:id
="
echoid-s3402
"
xml:space
="
preserve
">
<
pb
file
="
0134
"
n
="
134
"
rhead
="
FED. COMMANDINI
"/>
t u, x y ipſi g h æquidiſtare. </
s
>
<
s
xml:id
="
echoid-s3403
"
xml:space
="
preserve
">Et quoniam triangula, quæ
<
lb
/>
fiunt à lineis K y, y u, u s, s h æqualia ſuntinter ſe, & </
s
>
<
s
xml:id
="
echoid-s3404
"
xml:space
="
preserve
">ſimilia
<
lb
/>
triangulo K m h: </
s
>
<
s
xml:id
="
echoid-s3405
"
xml:space
="
preserve
">habebit triangulum K m h ad triangulũ
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0134-01
"
xlink:href
="
note-0134-01a
"
xml:space
="
preserve
">19. ſexti</
note
>
K δ y duplam proportionem eius, quæ eſt lineæ k h ad K y.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3406
"
xml:space
="
preserve
">ſed _K_ h poſita eſt quadrupla ipſius k y. </
s
>
<
s
xml:id
="
echoid-s3407
"
xml:space
="
preserve
">ergo triangulum
<
lb
/>
κ m h ad triangulum _K_ δ y eãdem proportionem habebit,
<
lb
/>
quam ſexdecim ad unũ & </
s
>
<
s
xml:id
="
echoid-s3408
"
xml:space
="
preserve
">ad quatuor triangula k δ y, y u,
<
lb
/>
u s, s α h habebit eandem, quam fexdecim ad quatuor, hoc
<
lb
/>
eſt quam h K ad κ y: </
s
>
<
s
xml:id
="
echoid-s3409
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3410
"
xml:space
="
preserve
">ſimiliter eandem habere demonſtra
<
lb
/>
bitur trian-
<
lb
/>
<
figure
xlink:label
="
fig-0134-01
"
xlink:href
="
fig-0134-01a
"
number
="
90
">
<
image
file
="
0134-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0134-01
"/>
</
figure
>
gulum κ m g
<
lb
/>
ad quatuor
<
lb
/>
triãgula K δ
<
lb
/>
x, x γ t, t β r,
<
lb
/>
r z g. </
s
>
<
s
xml:id
="
echoid-s3411
"
xml:space
="
preserve
">quare
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0134-02
"
xlink:href
="
note-0134-02a
"
xml:space
="
preserve
">2. uel 121
<
lb
/>
quinti.</
note
>
totum trian
<
lb
/>
gulum K g h
<
lb
/>
ad omnia tri
<
lb
/>
angula g z r,
<
lb
/>
r β t, t γ x, x δ
<
lb
/>
_K_, K δ y, y u,
<
lb
/>
u s, s α h ita
<
lb
/>
erit, ut h κ a d
<
lb
/>
k y, hoc eſt
<
lb
/>
ut h m ad m
<
lb
/>
q. </
s
>
<
s
xml:id
="
echoid-s3412
"
xml:space
="
preserve
">Si igitur in
<
lb
/>
triangulis a b c, d e f deſcribantur figuræ ſimiles ei, quæ de-
<
lb
/>
ſcripta eſt in g h K triangulo: </
s
>
<
s
xml:id
="
echoid-s3413
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3414
"
xml:space
="
preserve
">per lineas ſibi reſp onden-
<
lb
/>
tes plana ducantur: </
s
>
<
s
xml:id
="
echoid-s3415
"
xml:space
="
preserve
">totum priſma a f diuiſum eritin tria
<
lb
/>
ſolida parallelepipeda y γ, u β, s z, quorum baſes ſunt æ qua
<
lb
/>
les & </
s
>
<
s
xml:id
="
echoid-s3416
"
xml:space
="
preserve
">ſimiles ipſis parallelogrammis y γ, u β, s z: </
s
>
<
s
xml:id
="
echoid-s3417
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3418
"
xml:space
="
preserve
">in octo
<
lb
/>
priſmata g z r, r β t, t γ x, x δ K, κ δ y, y u, u s, s α h: </
s
>
<
s
xml:id
="
echoid-s3419
"
xml:space
="
preserve
">quorum
<
lb
/>
item baſes æquales, & </
s
>
<
s
xml:id
="
echoid-s3420
"
xml:space
="
preserve
">ſimiles ſunt dictis triangulis; </
s
>
<
s
xml:id
="
echoid-s3421
"
xml:space
="
preserve
">altitu-
<
lb
/>
do autem in omnibus, totius priſmatis altitudini æ qualis.</
s
>
<
s
xml:id
="
echoid-s3422
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>