Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 8
[out of range]
>
<
1 - 8
[out of range]
>
page
|<
<
(15)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div216
"
type
="
section
"
level
="
1
"
n
="
73
">
<
p
>
<
s
xml:id
="
echoid-s3584
"
xml:space
="
preserve
">
<
pb
o
="
15
"
file
="
0141
"
n
="
141
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
bere proportionem, quam ſpacium g h ad dictã
<
lb
/>
figuram, hoc modo demonſtrabimus.</
s
>
<
s
xml:id
="
echoid-s3585
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3586
"
xml:space
="
preserve
">Intelligatur circulus, uel ellipſis x æqualis figuræ rectili-
<
lb
/>
neæ in g h ſpacio deſcriptæ: </
s
>
<
s
xml:id
="
echoid-s3587
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3588
"
xml:space
="
preserve
">ab x conſtituatur conus, uel
<
lb
/>
<
figure
xlink:label
="
fig-0141-01
"
xlink:href
="
fig-0141-01a
"
number
="
95
">
<
image
file
="
0141-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0141-01
"/>
</
figure
>
coni portio, altitudinẽ habens eandẽ, quã cylindrus uel cy
<
lb
/>
lindri portio c e. </
s
>
<
s
xml:id
="
echoid-s3589
"
xml:space
="
preserve
">Sit deinde rectilinea figura, in quay eade,
<
lb
/>
quæ in ſpacio g h deſcripta eſt: </
s
>
<
s
xml:id
="
echoid-s3590
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3591
"
xml:space
="
preserve
">ab hac pyramis æquealta
<
lb
/>
conſtituatur. </
s
>
<
s
xml:id
="
echoid-s3592
"
xml:space
="
preserve
">Dico conũ uel coni portionẽ x pyramidiy æ-
<
lb
/>
qualẽ eſſe. </
s
>
<
s
xml:id
="
echoid-s3593
"
xml:space
="
preserve
">niſi enim ſit æqualis, uel maior, uel minor erit.</
s
>
<
s
xml:id
="
echoid-s3594
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3595
"
xml:space
="
preserve
">Sit primum maior, et exuperet ſolido z. </
s
>
<
s
xml:id
="
echoid-s3596
"
xml:space
="
preserve
">Itaque in circu
<
lb
/>
lo, uel ellipſi x deſcribatur figura rectilinea; </
s
>
<
s
xml:id
="
echoid-s3597
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3598
"
xml:space
="
preserve
">in ea pyra-
<
lb
/>
mis eandem, quam conus, uel coni portio altitudinem ha-
<
lb
/>
bens, ita ut portiones relictæ minores ſint ſolido z, quem-
<
lb
/>
admodum docetur in duodecimo libro elementorum pro
<
lb
/>
poſitione undecima. </
s
>
<
s
xml:id
="
echoid-s3599
"
xml:space
="
preserve
">erit pyramis x adhuc pyramide y ma
<
lb
/>
ior. </
s
>
<
s
xml:id
="
echoid-s3600
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3601
"
xml:space
="
preserve
">quoniam piramides æque altæ inter ſe ſunt, ſicuti ba
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0141-01
"
xlink:href
="
note-0141-01a
"
xml:space
="
preserve
">6. duode-
<
lb
/>
cimi.</
note
>
ſes; </
s
>
<
s
xml:id
="
echoid-s3602
"
xml:space
="
preserve
">pyramis x ad piramidem y eandem proportionem ha-
<
lb
/>
bet, quàm figura rectilinea x ad figuram y. </
s
>
<
s
xml:id
="
echoid-s3603
"
xml:space
="
preserve
">Sed ſigura </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>