Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 8
[out of range]
>
<
1 - 8
[out of range]
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div216
"
type
="
section
"
level
="
1
"
n
="
73
">
<
p
>
<
s
xml:id
="
echoid-s3500
"
xml:space
="
preserve
">
<
pb
file
="
0138
"
n
="
138
"
rhead
="
FED. COMMANDINI
"/>
ad priſma a b c e f g. </
s
>
<
s
xml:id
="
echoid-s3501
"
xml:space
="
preserve
">quare linea s y ad y t eandem propor-
<
lb
/>
tionem habet, quam priſma a d c e h g ad priſma a b c e f g.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3502
"
xml:space
="
preserve
">Sed priſmatis a b c e f g centrum grauitatis eſts: </
s
>
<
s
xml:id
="
echoid-s3503
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3504
"
xml:space
="
preserve
">priſma-
<
lb
/>
tis a d c e h g centrum t. </
s
>
<
s
xml:id
="
echoid-s3505
"
xml:space
="
preserve
">magnitudinis igitur ex his compo
<
lb
/>
ſitæ, hoc eſt totius priſmatis a g centrum grauitatis eſt pun
<
lb
/>
ctum y; </
s
>
<
s
xml:id
="
echoid-s3506
"
xml:space
="
preserve
">medium ſcilicet axis u x, qui oppoſitorum plano-
<
lb
/>
rum centra coniungit.</
s
>
<
s
xml:id
="
echoid-s3507
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3508
"
xml:space
="
preserve
">Rurſus ſit priſma baſim habens pentagonum a b c d e:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3509
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3510
"
xml:space
="
preserve
">quod ei opponitur ſit f g h _K_ l: </
s
>
<
s
xml:id
="
echoid-s3511
"
xml:space
="
preserve
">ſec enturq; </
s
>
<
s
xml:id
="
echoid-s3512
"
xml:space
="
preserve
">a f, b g, c h,
<
lb
/>
d _k_, el bifariam: </
s
>
<
s
xml:id
="
echoid-s3513
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3514
"
xml:space
="
preserve
">per diuiſiones ducto plano, ſectio ſit pẽ
<
lb
/>
tagonũ m n o p q. </
s
>
<
s
xml:id
="
echoid-s3515
"
xml:space
="
preserve
">deinde iuncta e b per lineas le, e b aliud
<
lb
/>
planum ducatur, diuidẽs priſ
<
lb
/>
<
figure
xlink:label
="
fig-0138-01
"
xlink:href
="
fig-0138-01a
"
number
="
93
">
<
image
file
="
0138-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0138-01
"/>
</
figure
>
ma a k in duo priſmata, in priſ
<
lb
/>
ma ſcilicet al, cuius plana op-
<
lb
/>
poſita ſint triangula a b e f g l:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3516
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3517
"
xml:space
="
preserve
">in prima b _k_ cuius plana op
<
lb
/>
poſita ſint quadrilatera b c d e
<
lb
/>
g h _k_ l. </
s
>
<
s
xml:id
="
echoid-s3518
"
xml:space
="
preserve
">Sint autem triangulo-
<
lb
/>
rum a b e, f g l centra grauita
<
lb
/>
tis puncta r ſ: </
s
>
<
s
xml:id
="
echoid-s3519
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3520
"
xml:space
="
preserve
">b c d e, g h _k_ l
<
lb
/>
quadrilaterorum centra tu: </
s
>
<
s
xml:id
="
echoid-s3521
"
xml:space
="
preserve
">
<
lb
/>
iunganturq; </
s
>
<
s
xml:id
="
echoid-s3522
"
xml:space
="
preserve
">r s, t u o ccurren-
<
lb
/>
tes plano m n o p q in punctis
<
lb
/>
x y. </
s
>
<
s
xml:id
="
echoid-s3523
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3524
"
xml:space
="
preserve
">itidem iungãtur r t, ſu,
<
lb
/>
x y. </
s
>
<
s
xml:id
="
echoid-s3525
"
xml:space
="
preserve
">erit in linea r t cẽtrum gra
<
lb
/>
uitatis pentagoni a b c d e; </
s
>
<
s
xml:id
="
echoid-s3526
"
xml:space
="
preserve
">
<
lb
/>
quod ſit z: </
s
>
<
s
xml:id
="
echoid-s3527
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3528
"
xml:space
="
preserve
">in linea ſu cen-
<
lb
/>
trum pentagoni f g h k l: </
s
>
<
s
xml:id
="
echoid-s3529
"
xml:space
="
preserve
">ſit au
<
lb
/>
tem χ: </
s
>
<
s
xml:id
="
echoid-s3530
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3531
"
xml:space
="
preserve
">ducatur z χ, quæ di-
<
lb
/>
cto plano in χ occurrat. </
s
>
<
s
xml:id
="
echoid-s3532
"
xml:space
="
preserve
">Itaq; </
s
>
<
s
xml:id
="
echoid-s3533
"
xml:space
="
preserve
">
<
lb
/>
punctum x eſt centrum graui
<
lb
/>
tatis trianguli m n q, ac priſ-
<
lb
/>
matis al: </
s
>
<
s
xml:id
="
echoid-s3534
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3535
"
xml:space
="
preserve
">y grauitatis centrum quadrilateri n o p q, ac
<
lb
/>
priſmatis b k. </
s
>
<
s
xml:id
="
echoid-s3536
"
xml:space
="
preserve
">quare y centrum erit pentagoni m n o p q. </
s
>
<
s
xml:id
="
echoid-s3537
"
xml:space
="
preserve
">&</
s
>
<
s
xml:id
="
echoid-s3538
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>