1215DE CENTRO GRAVIT. SOLID.
quo ſcilicet ln, om conueniunt.
Poſtremo in figura
a p l q b r m s c t n u d x o y centrum grauitatis trian
guli pay, & trapezii ploy eſtin linea a z: trapeziorum
uero lqxo, q b d x centrum eſtin linea z k: & trapeziorũ
b r u d, r m n u in k φ: & denique trapezii m s t n; & triangu
li s c t in φ c. quare magnitudinis ex his compoſitæ centrū
in linea a c conſiſtit. Rurſus trianguli q b r, & trapezii q l
m r centrum eſt in linea b χ: trapeziorum l p s m, p a c s,
a y t c, y o n t in linea χ φ: trapeziiq; o x u n, & trianguli
x d u centrum in ψ d. totius ergo magnitudinis centrum
eſtin linea b d. ex quo ſequitur, centrum grauitatis figuræ
a p l q b r m s c t n u d x o y eſſe punctū _K_, lineis ſcilicet a c,
b d commune, quæ omnia demonſtrare oportebat.
a p l q b r m s c t n u d x o y centrum grauitatis trian
guli pay, & trapezii ploy eſtin linea a z: trapeziorum
uero lqxo, q b d x centrum eſtin linea z k: & trapeziorũ
b r u d, r m n u in k φ: & denique trapezii m s t n; & triangu
li s c t in φ c. quare magnitudinis ex his compoſitæ centrū
in linea a c conſiſtit. Rurſus trianguli q b r, & trapezii q l
m r centrum eſt in linea b χ: trapeziorum l p s m, p a c s,
a y t c, y o n t in linea χ φ: trapeziiq; o x u n, & trianguli
x d u centrum in ψ d. totius ergo magnitudinis centrum
eſtin linea b d. ex quo ſequitur, centrum grauitatis figuræ
a p l q b r m s c t n u d x o y eſſe punctū _K_, lineis ſcilicet a c,
b d commune, quæ omnia demonſtrare oportebat.
THE OREMA III. PROPOSITIO III.
Cuiuslibet portio-
77[Figure 77] nis circuli, & ellipſis,
quæ dimidia non ſit
maior, centrum graui
tatis in portionis dia-
metro conſiſtit.
77[Figure 77] nis circuli, & ellipſis,
quæ dimidia non ſit
maior, centrum graui
tatis in portionis dia-
metro conſiſtit.
HOC eodem prorſus
modo demonſtrabitur,
quo in libro de centro gra
uitatis planorum ab Ar-
chimede demonſtratũ eſt,
in portione cõtenta recta
linea, & rectanguli coni ſe
ctione grauitatis cẽtrum
eſſe in diametro portio-
nis. Etita demonſtrari po
77[Handwritten note 7]
modo demonſtrabitur,
quo in libro de centro gra
uitatis planorum ab Ar-
chimede demonſtratũ eſt,
in portione cõtenta recta
linea, & rectanguli coni ſe
ctione grauitatis cẽtrum
eſſe in diametro portio-
nis. Etita demonſtrari po
77[Handwritten note 7]