Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 8
[out of range]
>
<
1 - 8
[out of range]
>
page
|<
<
(44)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div182
"
type
="
section
"
level
="
1
"
n
="
56
">
<
p
>
<
s
xml:id
="
echoid-s2617
"
xml:space
="
preserve
">
<
pb
o
="
44
"
file
="
0099
"
n
="
99
"
rhead
="
DE IIS QVAE VEH. IN AQVA.
"/>
gura: </
s
>
<
s
xml:id
="
echoid-s2618
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2619
"
xml:space
="
preserve
">alia eadem diſponantur demonſtrabimus rurſum
<
lb
/>
n t æqualem eſſe ipſi u i: </
s
>
<
s
xml:id
="
echoid-s2620
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2621
"
xml:space
="
preserve
">portiones a u q, a n z inter
<
lb
/>
ſe ſe æquales.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s2622
"
xml:space
="
preserve
">
<
figure
xlink:label
="
fig-0099-01
"
xlink:href
="
fig-0099-01a
"
number
="
65
">
<
image
file
="
0099-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0099-01
"/>
</
figure
>
Itaque quoniã
<
lb
/>
ĩ portionibus
<
lb
/>
æqualibus, & </
s
>
<
s
xml:id
="
echoid-s2623
"
xml:space
="
preserve
">ſi
<
lb
/>
milibus a u q l,
<
lb
/>
a n z g ductæ
<
lb
/>
sũt a q, a z, por
<
lb
/>
tiones æqua-
<
lb
/>
les auferentes;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s2624
"
xml:space
="
preserve
">cum diametris
<
lb
/>
portionum æ-
<
lb
/>
quales angu-
<
lb
/>
los cõtinebũt. </
s
>
<
s
xml:id
="
echoid-s2625
"
xml:space
="
preserve
">
<
lb
/>
ergo triangulo
<
lb
/>
rum n l s, u ω c
<
lb
/>
anguli, qui cõ-
<
lb
/>
ſiſtũt ad l ω pũ-
<
lb
/>
cta, æquales ſunt: </
s
>
<
s
xml:id
="
echoid-s2626
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2627
"
xml:space
="
preserve
">b s recta linea æqualis ipſi b c: </
s
>
<
s
xml:id
="
echoid-s2628
"
xml:space
="
preserve
">ſ r ipſi cr,
<
lb
/>
n χ ipſi u h: </
s
>
<
s
xml:id
="
echoid-s2629
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2630
"
xml:space
="
preserve
">χ tipſi h i. </
s
>
<
s
xml:id
="
echoid-s2631
"
xml:space
="
preserve
">quòd cum u y dupla ſit ipſius y i,
<
lb
/>
erit n χ maior, quàm dupla χ t. </
s
>
<
s
xml:id
="
echoid-s2632
"
xml:space
="
preserve
">Sit igitur n m ipſius m t du
<
lb
/>
pla. </
s
>
<
s
xml:id
="
echoid-s2633
"
xml:space
="
preserve
">Rurſus ex his manifeſtum eſt, non manere ipſam por-
<
lb
/>
tionem; </
s
>
<
s
xml:id
="
echoid-s2634
"
xml:space
="
preserve
">ſed inclinari ex parte a: </
s
>
<
s
xml:id
="
echoid-s2635
"
xml:space
="
preserve
">ponebatur autem portio
<
lb
/>
humidi ſuperficiem in uno puncto contingere. </
s
>
<
s
xml:id
="
echoid-s2636
"
xml:space
="
preserve
">ergo ne-
<
lb
/>
ceſſe eſt, ut eius baſis in humidum magis demergatur.</
s
>
<
s
xml:id
="
echoid-s2637
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div184
"
type
="
section
"
level
="
1
"
n
="
57
">
<
head
xml:id
="
echoid-head62
"
xml:space
="
preserve
">DEMONSTRATIO QVINT AE PARTIS.</
head
>
<
p
>
<
s
xml:id
="
echoid-s2638
"
xml:space
="
preserve
">HABEAT denique portio ad humidum in grauitate
<
lb
/>
minorem proportionem, quàm quadratum f p ad quadra-
<
lb
/>
tum b d: </
s
>
<
s
xml:id
="
echoid-s2639
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2640
"
xml:space
="
preserve
">quam proportionem habet portio ad humidũ
<
lb
/>
in grauitate, eandem quadratum, quod fit à linea ψ habeat
<
lb
/>
ad quadratum b d. </
s
>
<
s
xml:id
="
echoid-s2641
"
xml:space
="
preserve
">erit χ minor ipſa p f. </
s
>
<
s
xml:id
="
echoid-s2642
"
xml:space
="
preserve
">Rurſus </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>