Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of handwritten notes

< >
< >
page |< < of 213 > >|
120FED. COMMANDINI triangulum m k φ triangulo n k φ. ergo anguli l z k, o z k,
m
φ k, n φ k æquales ſunt, ac recti.
quòd cum etiam recti
ſint
, qui ad k;
æquidiſtabunt lineæ l o, m n axi b d. & ita.
1128. primi. demonſtrabuntur l m, o n ipſi a c æquidiſtare. Rurſus ſi
iungantur
a l, l b, b m, m c, c n, n d, d o, o a:
& bifariam di
uidantur
:
à centro autem k ad diuiſiones ductæ lineæ pro-
trahantur
uſque ad ſectionem in puncta p q r s t u x y:
& po
ſtremo
p y, q x, r u, s t, q r, p s, y t, x u coniungantur.
Simili-
ter
oſtendemus lineas
76[Figure 76] p y, q x, r u, s t axi b d æ-
quidiſtantes
eſſe:
& q r,
p
s, y t, x u æquidiſtan-
tesipſi
a c.
Itaque dico
harum
figurarum in el-
lipſi
deſcriptarum cen-
trum
grauitatis eſſe pũ-
ctum
k, idem quod &
el
lipſis
centrum.
quadri-
lateri
enim a b c d cen-
trum
eſt k, ex decima e-
iuſdem
libri Archime-
dis
, quippe in eo om
nes
diametri cõueniãt.
Sed in figura alb m c n
2213. Archi
medis
.
d o, quoniam trianguli
alb
centrum grauitatis
33Vltima. eſt in linea l e:
trapezijq́; a b m o centrum in linea e k: trape
zij
o m c d in k g:
& trianguli c n d in ipſa g n: erit magnitu
dinis
ex his omnibus conſtantis, uidelicet totius figuræ cen
trum
grauitatis in linea l n:
& o b eandem cauſſam in linea
o
m.
eſt enim trianguli a o d centrum in linea o h: trapezij
a
l n d in h k:
trapezij l b c n in k f: & trianguli b m c in fm.
cum ergo figuræ a l b m c n d o centrum grauitatis ſit in li-
nea
l n, &
in linea o m; erit centrum ipſius punctum k,

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index