Borelli, Giovanni Alfonso
,
De motionibus naturalibus a gravitate pendentibus
,
1670
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
page
|<
<
of 579
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.000948
">
<
pb
pagenum
="
185
"
xlink:href
="
010/01/193.jpg
"/>
<
arrow.to.target
n
="
marg238
"/>
<
lb
/>
ponderi R, &
<
expan
abbr
="
quã
">quam</
expan
>
proportionem habet ſemiſſis dia
<
lb
/>
metri AB baſis prædictæ columnæ ad ſuam altitudi
<
lb
/>
nem BC, eamdem habeat pondus R ad aliud pondus
<
lb
/>
S. oſtendendum modò eſt vim ponderis S æqualem
<
lb
/>
eſſe totali reſiſtentiæ contactus duarum
<
expan
abbr
="
prædictarũ
">prædictarum</
expan
>
<
lb
/>
ſuperficierum, ſeù potiùs æqualem eſſe vi, qua vacui
<
lb
/>
reſiſtentia ſuperatur, vel potiùs pondus S ſufficerę
<
lb
/>
ad diuellendam columnam à pauimento directa tra
<
lb
/>
ctione, ſcilicèt detinendo, &
<
expan
abbr
="
transferẽdo
">transferendo</
expan
>
baſim AB
<
lb
/>
ſemper æquidiſtantem plano baſis DE. </
s
>
<
s
id
="
s.000949
">Quia in actu
<
lb
/>
ſeparationis ſuperficiei AB à pauimento debet pun
<
lb
/>
ctum eius B contingere, & inniti ipſi pauimento, &
<
lb
/>
angularitèr ſubleuari terminus oppoſitus A, vnà cum
<
lb
/>
tota baſis ſuperficie AB, efficiendo nimirùm
<
expan
abbr
="
angulũ
">angulum</
expan
>
<
lb
/>
cum pauimenti plano DE; & hic obſeruari debent
<
lb
/>
loca vbi duæ vires applicantur, ſcilicèt reſiſtentia, &
<
lb
/>
eius, quæ eam ſuperat, & per quam directionem tra
<
lb
/>
hunt & vim exercent; & pater, quòd reſiſtentia iņ
<
lb
/>
omnibus
<
expan
abbr
="
pũctis
">punctis</
expan
>
inferioris ſuperficiei AB exiſtit,
<
expan
abbr
="
sũt-que
">sunt
<
lb
/>
que</
expan
>
veluti totidem fibræ
<
expan
abbr
="
perpẽdicularitèr
">perpendicularitèr</
expan
>
erectę ad
<
lb
/>
planum ſubiectum, quæ cum eo coniunguntur colli
<
lb
/>
ganturque; è contrà vis mouens M vectem CB adhi
<
lb
/>
bet circa centrum firmum B, & quia vniuerſa reſi
<
lb
/>
ſtentia vniformiter diſtribuitur per totam baſis ſu
<
lb
/>
perficiem AB, reducitur, & perindè reſiſtit ac ſi iņ
<
lb
/>
centro aggregati prædictarum fibrarum collocatą
<
lb
/>
eſſet, centrum verò omnium fibrarum prædictarum
<
lb
/>
idem eſt ac centrum I, quod eſt centrum eiuſdem ba
<
lb
/>
ſis; quaproptèr maximus conatus vniuerſæ reſiſten-</
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>