Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.002348">
                <pb pagenum="449" xlink:href="010/01/457.jpg"/>
                <arrow.to.target n="marg602"/>
                <lb/>
              miter excauata, itaut externa eius ſuperficies ſit om­
                <lb/>
              ninò ſimilis, & æqualis figuræ externæ ipſius B; quo­
                <lb/>
              niam ſubſtantia corporea ple­
                <lb/>
                <figure id="id.010.01.457.1.jpg" xlink:href="010/01/457/1.jpg" number="155"/>
                <lb/>
              na ipſius E nedùm homogenea,
                <lb/>
              ſed prorsùs æqualis eſt ipſi A,
                <lb/>
              ſcilicèt vniùs libræ, erunt duo
                <lb/>
              corpora A, & E æqualia inter
                <lb/>
              ſe, & æquè grauia, licèt diuer­
                <lb/>
              ſas, & inæquales figuras habe­
                <lb/>
                <arrow.to.target n="marg603"/>
                <lb/>
              ant, igitur A, & E in vacuo æ­
                <lb/>
              quali velocitate deſcendent.
                <lb/>
              </s>
              <s id="s.002349">poſtea quia duorum corporum B, & E pondera abſo­
                <lb/>
              luta æquantur ponderi eiuſdem A, igitur illa æqua­
                <lb/>
              lia
                <expan abbr="sũt">sunt</expan>
              inter ſe grauitate abſoluta, & à ſimilibus, ęqua­
                <lb/>
              libus, & ſimiliter poſitis figuris
                <expan abbr="comprehẽduntur">comprehenduntur</expan>
              , er­
                <lb/>
                <arrow.to.target n="marg604"/>
                <lb/>
              go æqualibus velocitatibus, cum in pleno fluido, tum
                <lb/>
              in vacuo deſcendent. </s>
              <s id="s.002350">quare A, & B æquè velocia ipſi
                <lb/>
              E erunt, & ideò interſe. </s>
            </p>
            <p type="margin">
              <s id="s.002351">
                <margin.target id="marg602"/>
              Cap. 10. de
                <lb/>
              æquitempo­
                <lb/>
              ranea natu­
                <lb/>
              rali veloci­
                <lb/>
              tate
                <expan abbr="grauiũ">grauium</expan>
              .</s>
            </p>
            <p type="margin">
              <s id="s.002352">
                <margin.target id="marg603"/>
              Pr. 210.
                <margin.target id="marg604"/>
              Pr. 209.</s>
            </p>
            <p type="main">
              <s id="s.002353">
                <emph type="center"/>
              PROP. CCXII.
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.002354">
                <emph type="center"/>
                <emph type="italics"/>
              Quælibet duo corpora inæqualitèr grauia in vacuo æquè
                <lb/>
              velocitèr deſcendent.
                <emph.end type="italics"/>
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.002355">SInt duo corpora A, & B quorum A grauius ſit,
                <expan abbr="quã">quam</expan>
                <lb/>
              B; moles verò ipſius A ponatur, vel maior, aut
                <lb/>
              æqualis, vel minor mole alterius B, ſcilicèt ſint præ­
                <lb/>
              dicta corpora eiuſdem grauitatis ſpecificæ, vel non,
                <lb/>
              dummodò eorum pondera abſoluta inæqualia ſint.
                <lb/>
              </s>
              <s id="s.002356">Dico in vacuo æquè velocia eſſe. </s>
              <s id="s.002357">Si hoc verum noņ </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>