Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670
page |< < of 579 > >|
<archimedes>
<text>
<body>
<chap>
<p type="main">
<s id="s.000082">
<arrow.to.target n="marg14"/>
<lb/>
eſt cylindri IG, intelligatur aqua primò eleuari iņ
<lb/>
ſitu T & deprimi in dextro canali in G, & hinc eleua­
<lb/>
<lb/>
duæ rectæ lineæ AG, & BH ſe ſecantes in M, eritque
<lb/>
punctum Min horizontali EL conſtitutum, propterea
<lb/>
quod duo cylindri aquæ AB, & HG æquales ſunt in­
<lb/>
ter ſe, cum ſemiſſes ſint cylindrorum æqualium TX &
<lb/>
IG, ergo altitudo AB ad HG eſt vt eiuſdem cylindri
<lb/>
<lb/>
<expan abbr="basĩ">basim</expan>
A quare altitudo AE ad LG erit vt AB
<lb/>
<expan abbr="sũq;">sunque</expan>
duæ rectæ lineæ AE & GL
<expan abbr="perpẽdicula">perpendicula</expan>
<lb/>
<expan abbr="horizontalẽ">horizontalem</expan>
FG, vel EL, & ideò inter ſe paral­
<lb/>
lelæ, ergo ob ſimilitudinem triangulorum vt AM ad
<lb/>
MG ita erit BM ad MH, nec non EM ad ML, & ideo
<lb/>
rectæ AG, BH, & EL ſe mutuo ſecabunt in eodem̨
<lb/>
puncto M. poſtea vt moles aquæ XBF vnà cum GHI
<lb/>
<lb/>
diuidendo, vt moles aquæ XBF ad GHI ita erit di­
<lb/>
ſtantia HQ ad QB, ideoque ex elementis mechanicis
<lb/>
punctum Q erit centrum grauitatis aquæ XBF vnà
<lb/>
cum GHI. quando verò aqua erat in ſummitate T &
<lb/>
canalis GLV omninò exhauſtus erat, tunc quidem̨
<lb/>
centrum grauitatis totius aquæ TAF perſiſtens iņ
<lb/>
puncto A medio eiuſdem canalis perindè operare­
<lb/>
tur ac ſi ſuſpenſus fuiſſet cylindrus èx puncto A: de­
<lb/>
preſſa poſtmodum aqua vſque ad Y & eleuata vſque
<lb/>
ad L in oppoſito canali, denuo centrum grauitatis re­
<lb/>
pertum prædictæ aquæ exiſtet in puncto R & tandem
<lb/>
depreſſa aqua vſque ad A in primo caſu & vſque ad </s>
</p>
</chap>
</body>
</text>
</archimedes>