Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo
page |< < (9) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div212" type="section" level="1" n="71">
          <p>
            <s xml:id="echoid-s3303" xml:space="preserve">
              <pb o="9" file="0129" n="129" rhead="DE CENTRO GRAVIT. SOLID."/>
            bet, ſi quidem 1 extra medias magnitudines poſitum eſt.
              <lb/>
            </s>
            <s xml:id="echoid-s3304" xml:space="preserve">Conſtatigitur centrum grauitatis priſmatis eſſe in plano
              <lb/>
              <figure xlink:label="fig-0129-01" xlink:href="fig-0129-01a" number="85">
                <image file="0129-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0129-01"/>
              </figure>
            g h k, quod nos demonſtrandum propoſuimus. </s>
            <s xml:id="echoid-s3305" xml:space="preserve">At ſi op-
              <lb/>
            poſita plana in priſmate ſint quadrilatera, uel plurilatera,
              <lb/>
            eadem erit in omnibus demonſtratio.</s>
            <s xml:id="echoid-s3306" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div214" type="section" level="1" n="72">
          <head xml:id="echoid-head79" xml:space="preserve">THE OREMA VII. PROPOSITIO VII.</head>
          <p>
            <s xml:id="echoid-s3307" xml:space="preserve">Cuiuslibet cylindri, & </s>
            <s xml:id="echoid-s3308" xml:space="preserve">cuiuslibet cylindri por
              <lb/>
            tionis centrum grauitatis eſt in plano, quod baſi-
              <lb/>
            bus æquidiſtans, parallelogrammi per axem late-
              <lb/>
            ra bifariam ſecat.</s>
            <s xml:id="echoid-s3309" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>