Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div278
"
type
="
section
"
level
="
1
"
n
="
93
">
<
p
>
<
s
xml:id
="
echoid-s4878
"
xml:space
="
preserve
">
<
pb
file
="
0194
"
n
="
194
"
rhead
="
FED. COMMANDINI
"/>
tionem cadet: </
s
>
<
s
xml:id
="
echoid-s4879
"
xml:space
="
preserve
">Itaque cum à portione conoidis, cuius gra-
<
lb
/>
uitatis centrum e auferatur inſcripta figura, centrum ha-
<
lb
/>
bens p: </
s
>
<
s
xml:id
="
echoid-s4880
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4881
"
xml:space
="
preserve
">ſit l e ad e p, ut figura inſcripta ad portiones reli
<
lb
/>
quas: </
s
>
<
s
xml:id
="
echoid-s4882
"
xml:space
="
preserve
">erit magnitudinis, quæ ex reliquis portionibus con
<
lb
/>
ſtat, centrum grauitatis punctum l, extra portionem ca-
<
lb
/>
dens. </
s
>
<
s
xml:id
="
echoid-s4883
"
xml:space
="
preserve
">quod fieri nequit. </
s
>
<
s
xml:id
="
echoid-s4884
"
xml:space
="
preserve
">ergo linea p e minor eſt ip ſa g li-
<
lb
/>
nea propoſita.</
s
>
<
s
xml:id
="
echoid-s4885
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4886
"
xml:space
="
preserve
">Ex quibus perſpicuum eſt centrum grauitatis
<
lb
/>
figuræ inſcriptæ, & </
s
>
<
s
xml:id
="
echoid-s4887
"
xml:space
="
preserve
">circumſcriptæ eo magis acce
<
lb
/>
dere ad portionis centrum, quo pluribus cylin-
<
lb
/>
dris, uel cylindri portionibus conſtet: </
s
>
<
s
xml:id
="
echoid-s4888
"
xml:space
="
preserve
">fiatq́ figu
<
lb
/>
ra inſcripta maior, & </
s
>
<
s
xml:id
="
echoid-s4889
"
xml:space
="
preserve
">circumſcripta minor. </
s
>
<
s
xml:id
="
echoid-s4890
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4891
"
xml:space
="
preserve
">
<
lb
/>
quanquam continenter ad portionis centrū pro-
<
lb
/>
pius admoueatur nunquam tamen ad ipſum per
<
lb
/>
ueniet. </
s
>
<
s
xml:id
="
echoid-s4892
"
xml:space
="
preserve
">ſequeretur enim figuram inſcriptam, nó
<
lb
/>
ſolum portioni, ſed etiam circumſcriptæ figuræ
<
lb
/>
æqualem eſſe. </
s
>
<
s
xml:id
="
echoid-s4893
"
xml:space
="
preserve
">quod eſt abſurdum.</
s
>
<
s
xml:id
="
echoid-s4894
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div281
"
type
="
section
"
level
="
1
"
n
="
94
">
<
head
xml:id
="
echoid-head101
"
xml:space
="
preserve
">THE OREMA XXIII. PROPOSITIO XXIX.</
head
>
<
p
>
<
s
xml:id
="
echoid-s4895
"
xml:space
="
preserve
">
<
emph
style
="
sc
">Cvivslibet</
emph
>
portionis conoidis rectangu-
<
lb
/>
li axis à cẽtro grauitatis ita diuiditur, ut pars quæ
<
lb
/>
terminatur ad uerticem, reliquæ partis, quæ ad ba
<
lb
/>
ſim ſit dupla.</
s
>
<
s
xml:id
="
echoid-s4896
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4897
"
xml:space
="
preserve
">SIT portio conoidis rectanguli uel abſciſſa plano ad
<
lb
/>
axem recto, uel non recto: </
s
>
<
s
xml:id
="
echoid-s4898
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4899
"
xml:space
="
preserve
">ſecta ipſa altero plano per axé
<
lb
/>
ſit ſuperſiciei ſe ctio a b c r ectanguli coni ſectio, uel parabo
<
lb
/>
le; </
s
>
<
s
xml:id
="
echoid-s4900
"
xml:space
="
preserve
">plani abſcindentis portionem ſectio ſit recta linea a c:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4901
"
xml:space
="
preserve
">axis portionis, & </
s
>
<
s
xml:id
="
echoid-s4902
"
xml:space
="
preserve
">ſectionis diameter b d. </
s
>
<
s
xml:id
="
echoid-s4903
"
xml:space
="
preserve
">Sumatur autem
<
lb
/>
in linea b d punctum e, ita ut b e ſit ipſius e d dupla. </
s
>
<
s
xml:id
="
echoid-s4904
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>