Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
(44)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div281
"
type
="
section
"
level
="
1
"
n
="
94
">
<
p
>
<
s
xml:id
="
echoid-s4986
"
xml:space
="
preserve
">
<
pb
o
="
44
"
file
="
0199
"
n
="
199
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
relinquetur p e ipſi n χ æqualis. </
s
>
<
s
xml:id
="
echoid-s4987
"
xml:space
="
preserve
">cum autem b e ſit dupla
<
lb
/>
e d, & </
s
>
<
s
xml:id
="
echoid-s4988
"
xml:space
="
preserve
">o p dupla p n, hoc eſt ipſius e χ, & </
s
>
<
s
xml:id
="
echoid-s4989
"
xml:space
="
preserve
">reliquum, uideli-
<
lb
/>
cet b o unà cum p e ipſius reliqui χ d duplnm erit. </
s
>
<
s
xml:id
="
echoid-s4990
"
xml:space
="
preserve
">eſtque
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0199-01
"
xlink:href
="
note-0199-01a
"
xml:space
="
preserve
">19. quinti</
note
>
b o dupla ζ d. </
s
>
<
s
xml:id
="
echoid-s4991
"
xml:space
="
preserve
">ergo p e, hoc eſt n χ ipſius χ ρ dupla. </
s
>
<
s
xml:id
="
echoid-s4992
"
xml:space
="
preserve
">ſed d n
<
lb
/>
dupla eſt n ζ. </
s
>
<
s
xml:id
="
echoid-s4993
"
xml:space
="
preserve
">reliqua igitur d χ dupla reliquæ χ n. </
s
>
<
s
xml:id
="
echoid-s4994
"
xml:space
="
preserve
">ſunt au-
<
lb
/>
tem d χ, p n inter ſe æquales: </
s
>
<
s
xml:id
="
echoid-s4995
"
xml:space
="
preserve
">itemq; </
s
>
<
s
xml:id
="
echoid-s4996
"
xml:space
="
preserve
">æquales χ n, p e. </
s
>
<
s
xml:id
="
echoid-s4997
"
xml:space
="
preserve
">qua-
<
lb
/>
re conſtat n p ipſius p e duplam eſſe. </
s
>
<
s
xml:id
="
echoid-s4998
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4999
"
xml:space
="
preserve
">idcirco p e ipſi e n
<
lb
/>
æqualem. </
s
>
<
s
xml:id
="
echoid-s5000
"
xml:space
="
preserve
">Rurſus cum ſit μ ν dupla o ν, & </
s
>
<
s
xml:id
="
echoid-s5001
"
xml:space
="
preserve
">μ σ dupla σ ν; </
s
>
<
s
xml:id
="
echoid-s5002
"
xml:space
="
preserve
">erit
<
lb
/>
etiam reliqua ν σ o dupla. </
s
>
<
s
xml:id
="
echoid-s5003
"
xml:space
="
preserve
">Eadem quoque ratione
<
lb
/>
cõcludetur π υ dupla υ m. </
s
>
<
s
xml:id
="
echoid-s5004
"
xml:space
="
preserve
">ergo ut ν σ ad σ O, ita π υ ad υ m:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s5005
"
xml:space
="
preserve
">componendoq;</
s
>
<
s
xml:id
="
echoid-s5006
"
xml:space
="
preserve
">, & </
s
>
<
s
xml:id
="
echoid-s5007
"
xml:space
="
preserve
">permutando, ut υ o ad π m, ita o σ ad
<
lb
/>
m υ & </
s
>
<
s
xml:id
="
echoid-s5008
"
xml:space
="
preserve
">ſunt æquales ν o, π m. </
s
>
<
s
xml:id
="
echoid-s5009
"
xml:space
="
preserve
">quare & </
s
>
<
s
xml:id
="
echoid-s5010
"
xml:space
="
preserve
">o σ, m υ æquales. </
s
>
<
s
xml:id
="
echoid-s5011
"
xml:space
="
preserve
">præ
<
lb
/>
terea σ π dupla eſt π τ, & </
s
>
<
s
xml:id
="
echoid-s5012
"
xml:space
="
preserve
">ν π ipſius π m. </
s
>
<
s
xml:id
="
echoid-s5013
"
xml:space
="
preserve
">reliqua igitur σ ν re
<
lb
/>
liquæ m τ dupla. </
s
>
<
s
xml:id
="
echoid-s5014
"
xml:space
="
preserve
">atque erat ν σ dupla σ o. </
s
>
<
s
xml:id
="
echoid-s5015
"
xml:space
="
preserve
">ergo m τ, σ o æ-
<
lb
/>
quales ſunt: </
s
>
<
s
xml:id
="
echoid-s5016
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s5017
"
xml:space
="
preserve
">ita æquales m υ, n φ. </
s
>
<
s
xml:id
="
echoid-s5018
"
xml:space
="
preserve
">at o σ, eſt æqualis
<
lb
/>
m υ. </
s
>
<
s
xml:id
="
echoid-s5019
"
xml:space
="
preserve
">Sequitur igitur, ut omnes o σ, m τ, m υ, n φ in-
<
lb
/>
ter ſe ſint æquales. </
s
>
<
s
xml:id
="
echoid-s5020
"
xml:space
="
preserve
">Sed ut ρ π ad π τ, hoc eſt ut 3 ad 2, ita n d
<
lb
/>
ad d χ: </
s
>
<
s
xml:id
="
echoid-s5021
"
xml:space
="
preserve
">permutãdoq; </
s
>
<
s
xml:id
="
echoid-s5022
"
xml:space
="
preserve
">ut ρ π ad n d, ita π τ ad d χ. </
s
>
<
s
xml:id
="
echoid-s5023
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s5024
"
xml:space
="
preserve
">ſũt æqua
<
lb
/>
les ζ π, n d. </
s
>
<
s
xml:id
="
echoid-s5025
"
xml:space
="
preserve
">ergo d χ, hoc eſt n p, & </
s
>
<
s
xml:id
="
echoid-s5026
"
xml:space
="
preserve
">π τ æquales. </
s
>
<
s
xml:id
="
echoid-s5027
"
xml:space
="
preserve
">Sed etiam æ-
<
lb
/>
quales n π, π m. </
s
>
<
s
xml:id
="
echoid-s5028
"
xml:space
="
preserve
">reliqua igitur π p reliquæ m τ, hoc eſt ipſi
<
lb
/>
n φ æqualis erit. </
s
>
<
s
xml:id
="
echoid-s5029
"
xml:space
="
preserve
">quare dempta p π ex p e, & </
s
>
<
s
xml:id
="
echoid-s5030
"
xml:space
="
preserve
">φ n dempta ex
<
lb
/>
n e, relinquitur p e æqualis e φ. </
s
>
<
s
xml:id
="
echoid-s5031
"
xml:space
="
preserve
">Itaque π, ρ centra figurarũ
<
lb
/>
ſecundo loco deſcriptarum a primis centris p n æquali in-
<
lb
/>
teruallo recedunt. </
s
>
<
s
xml:id
="
echoid-s5032
"
xml:space
="
preserve
">quòd ſi rurſus aliæ figuræ deſcribantur,
<
lb
/>
eodem modo demonſtrabimus earum centra æqualiter ab
<
lb
/>
his recedere, & </
s
>
<
s
xml:id
="
echoid-s5033
"
xml:space
="
preserve
">ad portionis conoidis centrum propius ad
<
lb
/>
moueri. </
s
>
<
s
xml:id
="
echoid-s5034
"
xml:space
="
preserve
">Ex quibus conſtat lineam π φ à centro grauitatis
<
lb
/>
portionis diuidi in partes æquales. </
s
>
<
s
xml:id
="
echoid-s5035
"
xml:space
="
preserve
">Si enim fieri poteſt, non
<
lb
/>
ſit centrum in puncto e, quod eſt lineæ π φ medium: </
s
>
<
s
xml:id
="
echoid-s5036
"
xml:space
="
preserve
">ſed in
<
lb
/>
ψ: </
s
>
<
s
xml:id
="
echoid-s5037
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s5038
"
xml:space
="
preserve
">ipſi π ψ æqualis fiat φ ω. </
s
>
<
s
xml:id
="
echoid-s5039
"
xml:space
="
preserve
">Cum igitur in portione ſolida
<
lb
/>
quædam figura inſcribi posſit, ita ut linea, quæ inter cen-
<
lb
/>
trum grauitatis portionis, & </
s
>
<
s
xml:id
="
echoid-s5040
"
xml:space
="
preserve
">inſcriptæ figuræ interiicitur,
<
lb
/>
qualibet linea propoſita ſit minor, quod proxime demon-
<
lb
/>
ſtrauimus: </
s
>
<
s
xml:id
="
echoid-s5041
"
xml:space
="
preserve
">perueniet tandem φ centrum inſcriptæ </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>