Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div234
"
type
="
section
"
level
="
1
"
n
="
80
">
<
pb
file
="
0154
"
n
="
154
"
rhead
="
FED. COMMANDINI
"/>
</
div
>
<
div
xml:id
="
echoid-div235
"
type
="
section
"
level
="
1
"
n
="
81
">
<
head
xml:id
="
echoid-head88
"
xml:space
="
preserve
">THE OREMA XII. PROPOSITIO XVI.</
head
>
<
p
>
<
s
xml:id
="
echoid-s3850
"
xml:space
="
preserve
">In ſphæra, & </
s
>
<
s
xml:id
="
echoid-s3851
"
xml:space
="
preserve
">ſphæroide idem eſt grauitatis, & </
s
>
<
s
xml:id
="
echoid-s3852
"
xml:space
="
preserve
">
<
lb
/>
figuræ centrum.</
s
>
<
s
xml:id
="
echoid-s3853
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3854
"
xml:space
="
preserve
">Secetur ſphæra, uel ſphæroid
<
gap
/>
no per axem ducto;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3855
"
xml:space
="
preserve
">quod ſectionem faciat circulum,
<
gap
/>
ellipſim a b c d, cuius
<
lb
/>
diameter, & </
s
>
<
s
xml:id
="
echoid-s3856
"
xml:space
="
preserve
">ſphæræ, uelſphæroidis axis d b; </
s
>
<
s
xml:id
="
echoid-s3857
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3858
"
xml:space
="
preserve
">centrume. </
s
>
<
s
xml:id
="
echoid-s3859
"
xml:space
="
preserve
">
<
lb
/>
Dico e grauitatis etiam centrum eſſe. </
s
>
<
s
xml:id
="
echoid-s3860
"
xml:space
="
preserve
">ſecetur enim altero
<
lb
/>
plano per e, ad planum ſecans recto, cuius fectio ſit circu-
<
lb
/>
lus circa diametrum a c. </
s
>
<
s
xml:id
="
echoid-s3861
"
xml:space
="
preserve
">erunt a d c, a b c dimidiæ portio-
<
lb
/>
nes ſphæræ, uel fphæroidis. </
s
>
<
s
xml:id
="
echoid-s3862
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3863
"
xml:space
="
preserve
">quoniam portionis a d c gra
<
lb
/>
uitatis centrum eſt in linea d, & </
s
>
<
s
xml:id
="
echoid-s3864
"
xml:space
="
preserve
">centrum portionis a b c in
<
lb
/>
ipſa b e; </
s
>
<
s
xml:id
="
echoid-s3865
"
xml:space
="
preserve
">totius ſphæræ, uel ſphæroidis grauitatis centrum
<
lb
/>
in axe d b conſiſtet. </
s
>
<
s
xml:id
="
echoid-s3866
"
xml:space
="
preserve
">Quòd ſi portionis a d c centrum graui
<
lb
/>
tatis ponatur eſſe f. </
s
>
<
s
xml:id
="
echoid-s3867
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3868
"
xml:space
="
preserve
">fiat ipſi f e æqualis e g: </
s
>
<
s
xml:id
="
echoid-s3869
"
xml:space
="
preserve
">punctũ g por
<
lb
/>
<
figure
xlink:label
="
fig-0154-01
"
xlink:href
="
fig-0154-01a
"
number
="
107
">
<
image
file
="
0154-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0154-01
"/>
</
figure
>
tionis a b c centrum erit. </
s
>
<
s
xml:id
="
echoid-s3870
"
xml:space
="
preserve
">ſolidis enim figuris ſimilibus & </
s
>
<
s
xml:id
="
echoid-s3871
"
xml:space
="
preserve
">
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0154-01
"
xlink:href
="
note-0154-01a
"
xml:space
="
preserve
">per 2. pe-
<
lb
/>
titionem</
note
>
æqualibus inter ſe aptatis, & </
s
>
<
s
xml:id
="
echoid-s3872
"
xml:space
="
preserve
">centra grauitatis ipſarum in-
<
lb
/>
ter fe aptentur neceſſe eſt. </
s
>
<
s
xml:id
="
echoid-s3873
"
xml:space
="
preserve
">ex quo fit, ut magnitudinis, quæ
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0154-02
"
xlink:href
="
note-0154-02a
"
xml:space
="
preserve
">4 Arch-
<
lb
/>
medis.</
note
>
ex utriſque cõſtat, hoc eſt ipſius ſphæræ, uel ſphæroidis gra
<
lb
/>
uitatis centrum ſitin medio lineæ f g, uidelicet in e. </
s
>
<
s
xml:id
="
echoid-s3874
"
xml:space
="
preserve
">Sphæ-
<
lb
/>
ræ igitur, uel ſphæroidis grauitatis centrum eſtidem, quod
<
lb
/>
centrum figuræ.</
s
>
<
s
xml:id
="
echoid-s3875
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>