Borelli, Giovanni Alfonso
,
De motionibus naturalibus a gravitate pendentibus
,
1670
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
page
|<
<
of 579
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.000962
">
<
pb
pagenum
="
188
"
xlink:href
="
010/01/196.jpg
"/>
<
arrow.to.target
n
="
marg241
"/>
<
lb
/>
eiuſdem AC ſit vt XS ad V. igitur duæ antecedentes
<
lb
/>
RX, & XS ad V, ſcilicet RS ad V eamdem propor
<
lb
/>
tionem habebit quam raritas ſpecifica aggregati ex
<
lb
/>
EF, & FG ad raritatem AC, ſuntquè moles EH, &
<
lb
/>
AC æquales, ergo eorum raritates abſolutæ ſunt pro
<
lb
/>
portionales ſpecificis, ſcilicèt ſe habent vt RS ad V.
<
lb
/>
quod erat, &c. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.000963
">
<
margin.target
id
="
marg241
"/>
Cap. 4. poſi
<
lb
/>
tiuam leui
<
lb
/>
tatem noņ
<
lb
/>
dari.</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.000964
">
<
emph
type
="
center
"/>
PROP. XCII.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.000965
">
<
emph
type
="
center
"/>
<
emph
type
="
italics
"/>
Cylindrum compoſitum ex duobus cylindris inæqualitèr ra
<
lb
/>
ris transformare in cylindrum ſimilitèr excauatum,
<
lb
/>
cuius pars continens homogenea, & æqualis ſit.
<
lb
/>
</
s
>
<
s
id
="
s.000966
">vni illorum, pars verò excauata homo
<
lb
/>
genea, & æqualis ſit reliquo.
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.000967
">SIt datus cylindrus ſoli
<
lb
/>
<
figure
id
="
id.010.01.196.1.jpg
"
xlink:href
="
010/01/196/1.jpg
"
number
="
73
"/>
<
lb
/>
dus AC, compoſitus ex
<
lb
/>
duobus cylindris AD, & DB
<
lb
/>
inæqualitèr raris alium cy
<
lb
/>
lindrum ſimilitèr
<
expan
abbr
="
excauatũ
">excauatum</
expan
>
<
lb
/>
æqualem, & ſimilem illi de
<
lb
/>
ſcribere, cuius pars continens æqualis, & homoge
<
lb
/>
nea ſit ipſi AD, contenta verò æqualis, & homoge
<
lb
/>
nea ſit ipſi DB. reperto centro
<
expan
abbr
="
q.
">que</
expan
>
cylindricæ figuræ
<
lb
/>
AC coniungantur rectæ AQ, BQ ad terminos lateris
<
lb
/>
cylindri AB, & fiat triangulum ENF ſimile, & æqua
<
lb
/>
le ipſi AQB. poſtea inter AB, & MB reperiantur duæ
<
lb
/>
mediæ proportionales, quarum maior ſit PB (vt do
<
lb
/>
cuimus lib. 5. conic. </
s
>
<
s
id
="
s.000968
">Apoll.lemm. 7.) deinde in
<
expan
abbr
="
triã-
">trian-</
expan
>
</
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>