Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo
page |< < (31) of 213 > >|
17331DE CENTRO GRAVIT. SOLID.
SIT fruſtum pyramidis a e, cuius maior baſis triangu-
lum a b c, minor d e f:
& oporteat ipſum plano, quod baſi
æquidiſtet, ita ſecare, ut ſectio ſit proportionalis inter triã
gula a b c, d e f.
Inueniatur inter lineas a b, d e media pro-
portionalis, quæ ſit b g:
& à puncto g erigatur g h æquidi-
ſtans b e, ſecansq;
a d in h: deinde per h ducatur planum
baſibus æ quidiſtans, cuius ſectio ſit triangulum h _k_ 1.
Dico
triangulum h K l proportionale eſſe inter triangula a b c,
d e f, hoc eſt triangulum a b c ad
127[Figure 127] triangulum h K l eandem habere
proportionem, quam triãgulum
h K l ad ipſum d e f.
Quoniã enim
lineæ a b, h K æquidiſtantium pla
1116. unde
cimi
norum ſectiones inter ſe æquidi-
ſtant:
atque æquidiſtant b _k_, g h:
linea h _k_ ipſi g b eſt æqualis: & pro
2234. primi pterea proportionalis inter a b,
d e.
quare ut a b ad h K, ita eſt h K
ad d e.
fiat ut h k ad d e, ita d e
ad aliam lineam, in qua ſit m.
erit
ex æquali ut a b ad d e, ita h k ad
m.
Et quoniam triangula a b c,
339. huius
corol.
h K l, d e f ſimilia ſunt;
triangulū
a b c ad triangulum h k l eſt, ut li-
4420. ſexti nea a b ad lineam d e:
triangulũ
autem h k l ad ipſum d e f eſt, ut h _k_ ad m.
ergo tríangulum
5511. quinti a b c ad triangulum h k l eandem proportionem habet,
quam triangulum h K l ad ipſum d e f.
Eodem modo in a-
liis fruſtis pyramidis idem demonſtrabitur.
Sit fruſtum coni, uel coni portionis a d: & ſecetur plano
per axem, cuius ſectio ſit a b c d, ita ut maior ipſius baſis ſit
circulus, uel ellipſis circa diametrum a b;
minor circa c d.
Rurſus inter lineas a b, c d inueniatur proportionalis b e:
&
ab e ducta e ſ æquid_i_ſtante b d, quæ lineam c a in f

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index