Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div44
"
type
="
section
"
level
="
1
"
n
="
23
">
<
pb
file
="
0034
"
n
="
34
"
rhead
="
ARCHIMEDIS
"/>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s655
"
xml:space
="
preserve
">_Erit r o minor, quàm, quæ uſque ad axem]_ Ex decima
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0034-01
"
xlink:href
="
note-0034-01a
"
xml:space
="
preserve
">E</
note
>
propoſitione quinti libri elementorum. </
s
>
<
s
xml:id
="
echoid-s656
"
xml:space
="
preserve
">Linea, quæ uſque ad axem
<
lb
/>
apud Archimedem, eſt dimidia eius, iuxta quam poſſunt, quæ à ſe-
<
lb
/>
ctione ducuntur; </
s
>
<
s
xml:id
="
echoid-s657
"
xml:space
="
preserve
">ut ex quarta propoſitione libri de conoidibus, & </
s
>
<
s
xml:id
="
echoid-s658
"
xml:space
="
preserve
">
<
lb
/>
ſphæroidibus apparet. </
s
>
<
s
xml:id
="
echoid-s659
"
xml:space
="
preserve
">cur uero ita appellata ſit, nos in commentarijs
<
lb
/>
in eam editis tradidimus.</
s
>
<
s
xml:id
="
echoid-s660
"
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s661
"
xml:space
="
preserve
">_Quare angulus r p ω acutus erit]_ producatur linea n o ad
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0034-02
"
xlink:href
="
note-0034-02a
"
xml:space
="
preserve
">F</
note
>
h, ut ſit r h æqualis ei, quæ uſque ad axem. </
s
>
<
s
xml:id
="
echoid-s662
"
xml:space
="
preserve
">ſi igitur à puncto h du-
<
lb
/>
catur linea ad rectos angulos ipſi n h, conueniet cum f p extra ſe-
<
lb
/>
ctionem: </
s
>
<
s
xml:id
="
echoid-s663
"
xml:space
="
preserve
">ducta enim per o ipſi a l æquidiſtans, extra ſectionem ca
<
lb
/>
dit ex decima ſepti-
<
lb
/>
<
figure
xlink:label
="
fig-0034-01
"
xlink:href
="
fig-0034-01a
"
number
="
20
">
<
image
file
="
0034-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0034-01
"/>
</
figure
>
ma primi libri coni-
<
lb
/>
corum. </
s
>
<
s
xml:id
="
echoid-s664
"
xml:space
="
preserve
">Itaque con-
<
lb
/>
ueniat in u. </
s
>
<
s
xml:id
="
echoid-s665
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s666
"
xml:space
="
preserve
">quo
<
lb
/>
niam f p est æqui-
<
lb
/>
distans diametro;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s667
"
xml:space
="
preserve
">h u uero ad diame-
<
lb
/>
trum perpendicula-
<
lb
/>
ris; </
s
>
<
s
xml:id
="
echoid-s668
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s669
"
xml:space
="
preserve
">r h æqualis
<
lb
/>
ei, quæ uſq; </
s
>
<
s
xml:id
="
echoid-s670
"
xml:space
="
preserve
">ad axẽ,
<
lb
/>
linea à puncto r ad
<
lb
/>
u ducta angulos re-
<
lb
/>
ctos faciet cum ea, quæ ſectionem in puncto p contingit, hoc eſt cum
<
lb
/>
k ω, ut mox demonstrabitur. </
s
>
<
s
xml:id
="
echoid-s671
"
xml:space
="
preserve
">quare perpendicularis r t inter p & </
s
>
<
s
xml:id
="
echoid-s672
"
xml:space
="
preserve
">
<
lb
/>
ω cadet; </
s
>
<
s
xml:id
="
echoid-s673
"
xml:space
="
preserve
">erítque r p ω angulus acutus.</
s
>
<
s
xml:id
="
echoid-s674
"
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s675
"
xml:space
="
preserve
">Sit rectanguli coni ſectio, ſeu parabole a b c, cuius
<
lb
/>
diameter b d: </
s
>
<
s
xml:id
="
echoid-s676
"
xml:space
="
preserve
">atque ipſam contingat linea e f in pun-
<
lb
/>
cto g: </
s
>
<
s
xml:id
="
echoid-s677
"
xml:space
="
preserve
">ſumatur autem in diametro b d linea h k æqua-
<
lb
/>
lis ei, quæ uſque ad axem: </
s
>
<
s
xml:id
="
echoid-s678
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s679
"
xml:space
="
preserve
">per g ducta g l, diame-
<
lb
/>
tro æquidistante, à puncto _k_ ad rectos angulos ipſi b d
<
lb
/>
ducatur _k_ m, ſecans g l in m. </
s
>
<
s
xml:id
="
echoid-s680
"
xml:space
="
preserve
">Dico lineam ab h </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>