Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo
page |< < (29) of 213 > >|
16929DE CENTRO GRAVIT. SOLID. l h eandem habet proportionem, quam e m ad m k, uideli-
cet
triplam.
quare linea l m ipſam e f ſecabit in puncto g:
etenim e g ad g f eſt, ut el ad l h. præterea quoniam h k, l m
æquidiſtant
, erunt triangula h e f, l e g ſimilia:
itemq; inter
ſe
ſimilia f e k, g e m:
& ut e fad e g, ita h fad l g: & ita f _K_ ad
g
m.
ergo uth fadlg, ita f k ad g m: & permutando uth f
ad
f _K_, ita l g ad g m.
ſed cum h ſit centrum trianguli a b d;
&
K triãguli b c d: punctũ uero f totius quadrilateri a b c d
centrum
:
erit ex 8. Archimedis de centro grauitatis plano
rum
h fad f K, ut triangulum b c d ad triangulum a b d:
ut
autem
b c d triangulum ad triangulum a b d, ita pyramis
b
c d e ad pyramidem a b d e.
ergo
124[Figure 124] linea lg ad g m erit, ut pyramis
b
c d e ad pyramidé a b d e.
ex quo
ſequitur
, ut totius pyramidis
a
b c d e punctum g ſit grauitatis
centrum
.
Rurſus ſit pyramis ba-
ſim
habens pentagonum a b c d e:
& axem f g: diuidaturq; axis in
cto
h, ita ut fh ad h g triplam habe
at
proportionem.
Dico h grauita-
tis
centrũ eſſe pyramidis a b c d e f.

iungatur
enim e b:
intelligaturq;
pyramis
, cuius uertex f, &
baſis
triangulum
a b e:
& alia pyramis
intelligatur
eundem uerticem ha-
bens
, &
baſim b c d e quadrilaterũ:
ſit
autem pyramidis a b e faxis f K,
&
grauitatis centrum l: & pyrami
dis
b c d e faxis f m, &
centrum gra
uitatis
n:
iunganturq; K m, l n;
quæ
per puncta g h tranſibunt.

Rurſus
eodem modo, quo ſup ra,
demonſtrabimus
lineas K g m, l h n ſibiipſis æ

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index