Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
(41)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div278
"
type
="
section
"
level
="
1
"
n
="
93
">
<
p
>
<
s
xml:id
="
echoid-s4858
"
xml:space
="
preserve
">
<
pb
o
="
41
"
file
="
0193
"
n
="
193
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
noidis ad portiones reliquas, ita alia linea, quæ ſit 1
<
emph
style
="
sc
">K</
emph
>
ad
<
lb
/>
k e: </
s
>
<
s
xml:id
="
echoid-s4859
"
xml:space
="
preserve
">erit 1k maior, quam b k: </
s
>
<
s
xml:id
="
echoid-s4860
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4861
"
xml:space
="
preserve
">ideo punctum l extra por-
<
lb
/>
tionem cadet. </
s
>
<
s
xml:id
="
echoid-s4862
"
xml:space
="
preserve
">Quoniã
<
lb
/>
<
figure
xlink:label
="
fig-0193-01
"
xlink:href
="
fig-0193-01a
"
number
="
143
">
<
image
file
="
0193-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0193-01
"/>
</
figure
>
igitur à figura circum-
<
lb
/>
ſcripta, cuius grauitatis
<
lb
/>
centrum eſt k, aufertur
<
lb
/>
portio conoidis, cuius
<
lb
/>
centrum e. </
s
>
<
s
xml:id
="
echoid-s4863
"
xml:space
="
preserve
">habetq; </
s
>
<
s
xml:id
="
echoid-s4864
"
xml:space
="
preserve
">l K
<
lb
/>
ad K e eam proportio-
<
lb
/>
nem, quam portio co-
<
lb
/>
noidis ad reliquas por-
<
lb
/>
tiones; </
s
>
<
s
xml:id
="
echoid-s4865
"
xml:space
="
preserve
">erit punctum l
<
lb
/>
extra portionem cadẽs,
<
lb
/>
centrum magnitudinis
<
lb
/>
ex reliquis portionibus compoſitæ. </
s
>
<
s
xml:id
="
echoid-s4866
"
xml:space
="
preserve
">illud autem fieri nullo
<
lb
/>
modo poteſt. </
s
>
<
s
xml:id
="
echoid-s4867
"
xml:space
="
preserve
">quare conſtat lineam k e ipſa g linea propoſi
<
lb
/>
ta minorem eſſe.</
s
>
<
s
xml:id
="
echoid-s4868
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4869
"
xml:space
="
preserve
">Rurfus inſcribatur portioni figura, uidelicet cylindr us
<
lb
/>
m n, ut ſit ipſius altitudo
<
lb
/>
<
figure
xlink:label
="
fig-0193-02
"
xlink:href
="
fig-0193-02a
"
number
="
144
">
<
image
file
="
0193-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0193-02
"/>
</
figure
>
æqualis dimidio axis b d:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4870
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4871
"
xml:space
="
preserve
">quam proportionem
<
lb
/>
habet b e ad g, habeat m n
<
lb
/>
cylindrus ad ſolidum o. </
s
>
<
s
xml:id
="
echoid-s4872
"
xml:space
="
preserve
">
<
lb
/>
inſcrib itur deinde eidem
<
lb
/>
alia figura, ita ut portio-
<
lb
/>
nes reliquæ ſint ſolido o
<
lb
/>
minores: </
s
>
<
s
xml:id
="
echoid-s4873
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4874
"
xml:space
="
preserve
">centrum gra
<
lb
/>
uitatis figuræ ſit p. </
s
>
<
s
xml:id
="
echoid-s4875
"
xml:space
="
preserve
">Dico
<
lb
/>
lineam p e ipſa g minorẽ
<
lb
/>
eſſe. </
s
>
<
s
xml:id
="
echoid-s4876
"
xml:space
="
preserve
">ſi enim non ſit mi-
<
lb
/>
nor, eodem, quo ſupra modo demonſtrabimus figuram in
<
lb
/>
ſcriptam ad reliquas portiones maiorem proportionem
<
lb
/>
habere, quàm b e ad e p. </
s
>
<
s
xml:id
="
echoid-s4877
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4878
"
xml:space
="
preserve
">ſi fiat alia linea l e ad e p, ut eſt
<
lb
/>
figura inſcripta ad reliquas portiones, pũctum l extra </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>