Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo
page |< < (2) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div10" type="section" level="1" n="9">
          <p>
            <s xml:id="echoid-s137" xml:space="preserve">
              <pb o="2" file="0015" n="15" rhead="DE IIS QVAE VEH. IN AQVA."/>
            loq; </s>
            <s xml:id="echoid-s138" xml:space="preserve">lineæ ſumptæ circulus deſcribatur. </s>
            <s xml:id="echoid-s139" xml:space="preserve">cadet ergo ipſius
              <lb/>
            circunferentia partim
              <lb/>
              <figure xlink:label="fig-0015-01" xlink:href="fig-0015-01a" number="5">
                <image file="0015-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0015-01"/>
              </figure>
            extra lineam a b c d, par
              <lb/>
            tim intra; </s>
            <s xml:id="echoid-s140" xml:space="preserve">quoniam ea,
              <lb/>
            quæ ex centro quibuſ-
              <lb/>
            dam quidem à puncto
              <lb/>
            k ad ipſam ductis eſtma
              <lb/>
            ior; </s>
            <s xml:id="echoid-s141" xml:space="preserve">& </s>
            <s xml:id="echoid-s142" xml:space="preserve">quibuſdam mi-
              <lb/>
            nor. </s>
            <s xml:id="echoid-s143" xml:space="preserve">Itaq; </s>
            <s xml:id="echoid-s144" xml:space="preserve">ſit circuli de-
              <lb/>
            ſcripti circunferentia
              <lb/>
            fb h: </s>
            <s xml:id="echoid-s145" xml:space="preserve">& </s>
            <s xml:id="echoid-s146" xml:space="preserve">ex b ad k ducta
              <lb/>
            linea, iungãtur fk k h e,
              <lb/>
            quæ angulos æquales faciant. </s>
            <s xml:id="echoid-s147" xml:space="preserve">deſcribatur autem & </s>
            <s xml:id="echoid-s148" xml:space="preserve">ex cen
              <lb/>
            tro k circunferentia quædam x o p in plano, & </s>
            <s xml:id="echoid-s149" xml:space="preserve">in humido.
              <lb/>
            </s>
            <s xml:id="echoid-s150" xml:space="preserve">ergo partes humidi, quæ ſunt ad circunferentiam x o p æ-
              <lb/>
            qualiter iacent, ac continuatæ inter ſe ſe: </s>
            <s xml:id="echoid-s151" xml:space="preserve">& </s>
            <s xml:id="echoid-s152" xml:space="preserve">premũtur qui
              <lb/>
            dem partes, quæ ad x o circunferentiam, humido, quod lo
              <lb/>
            co a b continetur: </s>
            <s xml:id="echoid-s153" xml:space="preserve">quæ uero ad circunferentiam o p pre-
              <lb/>
            muntur humido, quod continetur b e. </s>
            <s xml:id="echoid-s154" xml:space="preserve">inæqualiter igitur
              <lb/>
            premuntur partes humidi ad cir cunferentiã x o, & </s>
            <s xml:id="echoid-s155" xml:space="preserve">ad o p. </s>
            <s xml:id="echoid-s156" xml:space="preserve">
              <lb/>
            quare minus preſſæ à magis presſis expellentur. </s>
            <s xml:id="echoid-s157" xml:space="preserve">non er-
              <lb/>
            go conſiſtet humidum. </s>
            <s xml:id="echoid-s158" xml:space="preserve">Atqui ponebatur conſiſtens, & </s>
            <s xml:id="echoid-s159" xml:space="preserve">ma
              <lb/>
            nens. </s>
            <s xml:id="echoid-s160" xml:space="preserve">neceſſarium eſt igitur lineam a b c d eſſe circuli cir
              <lb/>
            cunferentiam, cuius centrum k. </s>
            <s xml:id="echoid-s161" xml:space="preserve">Similiter autem demon-
              <lb/>
            ſtrabitur, & </s>
            <s xml:id="echoid-s162" xml:space="preserve">ſi quomodocunque aliter ſuperficies humidi
              <lb/>
            plano ſecta fuerit per centrum terræ ſectionem circuli cir
              <lb/>
            cunferentiam eſſe: </s>
            <s xml:id="echoid-s163" xml:space="preserve">& </s>
            <s xml:id="echoid-s164" xml:space="preserve">centrum ipſius eſſe, quod & </s>
            <s xml:id="echoid-s165" xml:space="preserve">terræ cen
              <lb/>
            trum. </s>
            <s xml:id="echoid-s166" xml:space="preserve">Ex quibus conſtat ſuperficiem humidi conſiſtentis,
              <lb/>
              <note position="right" xlink:label="note-0015-01" xlink:href="note-0015-01a" xml:space="preserve">Prima hu
                <lb/>
              ius.</note>
            atque manentis ſphæricam eſſe: </s>
            <s xml:id="echoid-s167" xml:space="preserve">& </s>
            <s xml:id="echoid-s168" xml:space="preserve">eius ſphæræ centrum
              <lb/>
            idem, quod centrum terræ: </s>
            <s xml:id="echoid-s169" xml:space="preserve">quoniam eiuſmodi eſt, ut ſecta
              <lb/>
            per idem ſemper punctum ſectionem faciat circuli circun
              <lb/>
            ferentiam, centrum habentis punctum illud, per quod ipſa
              <lb/>
            plano ſecatur.</s>
            <s xml:id="echoid-s170" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>