Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
(26)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div94
"
type
="
section
"
level
="
1
"
n
="
37
">
<
p
style
="
it
">
<
s
xml:id
="
echoid-s1516
"
xml:space
="
preserve
">
<
pb
o
="
26
"
file
="
0063
"
n
="
63
"
rhead
="
DE IIS QVAE VEH. IN AQVA.
"/>
_humidi ſuperficiem.</
s
>
<
s
xml:id
="
echoid-s1517
"
xml:space
="
preserve
">]_ Est enim t ω æqualis κ r, hoc eſt ei, quæ
<
lb
/>
uſque ad axem. </
s
>
<
s
xml:id
="
echoid-s1518
"
xml:space
="
preserve
">quare ex ijs, quæ ſuperius demonſtrata ſunt, linea
<
lb
/>
t h ducta erit ad humidi ſuperficiem perpendicularis.</
s
>
<
s
xml:id
="
echoid-s1519
"
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s1520
"
xml:space
="
preserve
">_Minorem igitur proportionem habet quadratum p i_
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0063-01
"
xlink:href
="
note-0063-01a
"
xml:space
="
preserve
">O</
note
>
_ad quadratum i y, quàm quadratum e ψ ad ψ b quadratũ]_
<
lb
/>
Hæc & </
s
>
<
s
xml:id
="
echoid-s1521
"
xml:space
="
preserve
">alia, quæ ſequuntur, tum in hac, tum in ſequenti propoſitio-
<
lb
/>
ne non alio, quàm quo ſupra modo demonstrabimus.</
s
>
<
s
xml:id
="
echoid-s1522
"
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s1523
"
xml:space
="
preserve
">_Itaque per z g ductis perpendicularibus ad humidi ſu-_
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0063-02
"
xlink:href
="
note-0063-02a
"
xml:space
="
preserve
">P</
note
>
_perficiem, quæ i pſi t h æ quidiftent; </
s
>
<
s
xml:id
="
echoid-s1524
"
xml:space
="
preserve
">ſequitur portionem ip_
<
lb
/>
_ſam non manere, ſed reuolui adeo, ut axis cum ſuperſicie_
<
lb
/>
_humidi angulum faciat maiorem eo, quem nunc facit.</
s
>
<
s
xml:id
="
echoid-s1525
"
xml:space
="
preserve
">]_
<
lb
/>
Nam cum perpendicularis, quæ per g, ducitur ad eas partes cadat,
<
lb
/>
in quibus eſt l; </
s
>
<
s
xml:id
="
echoid-s1526
"
xml:space
="
preserve
">quæ autem per Z ad eis in quibus a: </
s
>
<
s
xml:id
="
echoid-s1527
"
xml:space
="
preserve
">neceſſarium eſt
<
lb
/>
centrum g deorſum ferri, & </
s
>
<
s
xml:id
="
echoid-s1528
"
xml:space
="
preserve
">Z ſurſum. </
s
>
<
s
xml:id
="
echoid-s1529
"
xml:space
="
preserve
">quare partes ſolidi, quæ
<
lb
/>
ſunt ad l deorſum; </
s
>
<
s
xml:id
="
echoid-s1530
"
xml:space
="
preserve
">quæ uero ad a ſurſum ferentur, ut axis cum ſu-
<
lb
/>
perficie humidi maiorem angulum contineat.</
s
>
<
s
xml:id
="
echoid-s1531
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1532
"
xml:space
="
preserve
">Sic enim erit i o æ qualis ψ b, itẽq; </
s
>
<
s
xml:id
="
echoid-s1533
"
xml:space
="
preserve
">ω i æ qualis ψ r, & </
s
>
<
s
xml:id
="
echoid-s1534
"
xml:space
="
preserve
">p h
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0063-03
"
xlink:href
="
note-0063-03a
"
xml:space
="
preserve
">Q</
note
>
ipſi f.</
s
>
<
s
xml:id
="
echoid-s1535
"
xml:space
="
preserve
">] _Hoc in tertia figura, quam nos addidimus, perſpicue apparet_.</
s
>
<
s
xml:id
="
echoid-s1536
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div111
"
type
="
section
"
level
="
1
"
n
="
38
">
<
head
xml:id
="
echoid-head43
"
xml:space
="
preserve
">PROPOSITIO IX.</
head
>
<
p
>
<
s
xml:id
="
echoid-s1537
"
xml:space
="
preserve
">
<
emph
style
="
sc
">Recta</
emph
>
portio conoidis rectanguli, quando
<
lb
/>
axem habuerit maiorem quidem, quàm ſeſquial-
<
lb
/>
terum eius, quæ uſque ad axem; </
s
>
<
s
xml:id
="
echoid-s1538
"
xml:space
="
preserve
">minorem uero,
<
lb
/>
quàm ut ad eam, quæ uſque ad axem proportio-
<
lb
/>
nem habeat, quam quindecim ad quatuor; </
s
>
<
s
xml:id
="
echoid-s1539
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1540
"
xml:space
="
preserve
">in
<
lb
/>
grauitate ad humidum proportionem habeat ma
<
lb
/>
iorem, quàm exceſſus, quo quadratum, quod fit
<
lb
/>
ab axe maius eſt quadrato, quod ab exceſſu, quo
<
lb
/>
axis eſt maior, quàm ſeſquialter eius, quæ uſq; </
s
>
<
s
xml:id
="
echoid-s1541
"
xml:space
="
preserve
">ad
<
lb
/>
axem, habet ad quadratum, quod ab axe: </
s
>
<
s
xml:id
="
echoid-s1542
"
xml:space
="
preserve
">in </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>