Salusbury, Thomas, Mathematical collections and translations (Tome I), 1667
page |< < of 701 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <pb xlink:href="040/01/204.jpg" pagenum="186"/>
            <p type="margin">
              <s>
                <margin.target id="marg376"/>
                <emph type="italics"/>
              Contact in a
                <lb/>
              gle point is not
                <lb/>
              culiar to the
                <lb/>
              fect Spheres onely?
                <lb/>
              </s>
              <s>but belongeth to all
                <lb/>
              curved figures.
                <emph.end type="italics"/>
              </s>
            </p>
            <p type="margin">
              <s>
                <margin.target id="marg377"/>
                <emph type="italics"/>
              It is more
                <lb/>
              cult to find Figures
                <lb/>
              that touch with a
                <lb/>
              part of their
                <lb/>
              face, than in one
                <lb/>
              ſole point.
                <emph.end type="italics"/>
              </s>
            </p>
            <p type="main">
              <s>SIMP. </s>
              <s>You believe then, that two ſtones, or two pieces of
                <lb/>
              ron taken at chance, and put together, do for the moſt part touch
                <lb/>
              in one ſole point?</s>
            </p>
            <p type="main">
              <s>SALV. </s>
              <s>In caſual encounters, I do not think they do; as well
                <lb/>
              becauſe for the moſt part there will be ſome ſmall yielding filth
                <lb/>
              upon them, as becauſe that no diligence is uſed in applying them
                <lb/>
              without ſtriking one another; and every ſmall matter ſufficeth to
                <lb/>
              make the one ſuperficies yield ſomewhat to the other; ſo that
                <lb/>
              they interchangeably, at leaſt in ſome ſmall particle, receive ſigure
                <lb/>
              from the impreſſion of each other. </s>
              <s>But in caſe their ſuperficies
                <lb/>
              were very terſe and polite, and that they were both laid upon a
                <lb/>
              table, that ſo one might not preſſe upon the other, and gently put
                <lb/>
              towards one another, I queſtion not, but that they might be
                <lb/>
              brought to the ſimple contact in one onely point.</s>
            </p>
            <p type="main">
              <s>SAGR. </s>
              <s>It is requiſite, with your permiſſion, that I propound a
                <lb/>
              certain ſcruple of mine, which came into my minde, whil'ſt I heard
                <lb/>
              propoſed by
                <emph type="italics"/>
              Simplicius,
                <emph.end type="italics"/>
              the impoſſibility of finding a materiall
                <lb/>
              and ſolid body, that is, perfectly of a Spherical figure, and whil'ſt
                <lb/>
              J law
                <emph type="italics"/>
              Salviatus
                <emph.end type="italics"/>
              in a certain manner, not gainſaying, to give his
                <lb/>
              conſent thereto; therefore I would know, whether there would
                <lb/>
              be the ſame difficulty in forming a ſolid of ſome other figure, that
                <lb/>
              is, to expreſſe my ſelf better, whether there is more difficulty in
                <lb/>
              reducing a piece of Marble into the figure of a perfect Sphere, than
                <lb/>
              into a perfect Pyramid, or into a perfect Horſe, or into a perfect
                <lb/>
              Graſſe-hopper?</s>
            </p>
            <p type="main">
              <s>SALV. </s>
              <s>To this I will make you the firſt anſwer: and in the
                <lb/>
              firſt place, I will acquit my ſelf of the aſſent which you think I
                <lb/>
              gave to
                <emph type="italics"/>
              Simplicius,
                <emph.end type="italics"/>
              which was only for a time; for I had it alſo in
                <lb/>
              my thoughts, betore I intended to enter upon any other matter, to
                <lb/>
              ſpeak that, which, it may be, is the ſame, or very like to that which
                <lb/>
              you are about to ſay, And anſwering to your firſt queſtion, I ſay,
                <lb/>
                <arrow.to.target n="marg378"/>
                <lb/>
              that if any figure can be given to a Solid, the Spherical is the
                <lb/>
              eſt of all others, as it is likewiſe the moſt ſimple, and holdeth the
                <lb/>
              ſame place amongſt ſolid figures, as the Circle holdeth amongſt
                <lb/>
                <arrow.to.target n="marg379"/>
                <lb/>
              the ſuperficial. </s>
              <s>The deſcription of which Circle, as being more
                <lb/>
              ſie than all the reſt, hath alone been judged by
                <emph type="italics"/>
              Mathematicians
                <emph.end type="italics"/>
                <lb/>
              worthy to be put amongſt the ^{*}
                <emph type="italics"/>
              poſtulata
                <emph.end type="italics"/>
              belonging to the
                <lb/>
                <arrow.to.target n="marg380"/>
                <lb/>
              ption of all other figures. </s>
              <s>And the formation of the Sphere is
                <lb/>
              ſo very eaſie, that if in a plain plate of hard metal you take an
                <lb/>
              empty or hollow circle, within which any Solid goeth caſually
                <lb/>
              volving that was before but groſly rounded, it ſhall, without any
                <lb/>
              other artifice be reduced to a Spherical figure, as perfect as is
                <lb/>
              ſible for it to be; provided, that that ſame Solid be not leſſe than
                <lb/>
              the Sphere that would paſſe thorow that Circle. </s>
              <s>And that which is
                <lb/>
              yet more worthy of our conſideration is, that within the ſelf-ſame </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>