Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div206
"
type
="
section
"
level
="
1
"
n
="
68
">
<
p
>
<
s
xml:id
="
echoid-s3149
"
xml:space
="
preserve
">
<
pb
file
="
0124
"
n
="
124
"
rhead
="
FED. COMMANDINI
"/>
in linea e b punctũ g, it aut ſit g e æqualis e f. </
s
>
<
s
xml:id
="
echoid-s3150
"
xml:space
="
preserve
">erit g por-
<
lb
/>
tionis a b c centrum. </
s
>
<
s
xml:id
="
echoid-s3151
"
xml:space
="
preserve
">nam ſi hæ portiones, quæ æquales
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s3152
"
xml:space
="
preserve
">ſimiles ſunt, inter ſe ſe aptentur, ita ut b e cadat in d e,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s3153
"
xml:space
="
preserve
">punctum b in d cadet, & </
s
>
<
s
xml:id
="
echoid-s3154
"
xml:space
="
preserve
">g in f: </
s
>
<
s
xml:id
="
echoid-s3155
"
xml:space
="
preserve
">figuris autem æquali-
<
lb
/>
bus, & </
s
>
<
s
xml:id
="
echoid-s3156
"
xml:space
="
preserve
">ſimilibus inter ſe aptatis, centra quoque grauitatis
<
lb
/>
ipſarum inter ſe aptata erunt, ex quinta petitione Archi-
<
lb
/>
medis in libro de centro grauitatis planorum. </
s
>
<
s
xml:id
="
echoid-s3157
"
xml:space
="
preserve
">Quare cum
<
lb
/>
portionis a d c centrum grauitatis ſit ſ: </
s
>
<
s
xml:id
="
echoid-s3158
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3159
"
xml:space
="
preserve
">portionis
<
lb
/>
a b c centrum g: </
s
>
<
s
xml:id
="
echoid-s3160
"
xml:space
="
preserve
">magnitudinis; </
s
>
<
s
xml:id
="
echoid-s3161
"
xml:space
="
preserve
">quæ ex utriſque efficitur:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3162
"
xml:space
="
preserve
">hoc eſt circuli uel ellipſis grauitatis centrum in medio li-
<
lb
/>
neæ f g, quod eſt e, conſiſtet, ex quarta propoſitione eiuſ-
<
lb
/>
dem libri Archimedis. </
s
>
<
s
xml:id
="
echoid-s3163
"
xml:space
="
preserve
">ergo circuli, uel ellipſis centrum
<
lb
/>
grauitatis eſt idem, quod figuræ centrum. </
s
>
<
s
xml:id
="
echoid-s3164
"
xml:space
="
preserve
">atque illud eſt,
<
lb
/>
quod demonſtrare oportebat.</
s
>
<
s
xml:id
="
echoid-s3165
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3166
"
xml:space
="
preserve
">Ex quibus ſequitur portionis circuli, uel ellip-
<
lb
/>
ſis, quæ dimidia maior ſit, centrum grauitatis in
<
lb
/>
diametro quoque ipſius conſiſtere.</
s
>
<
s
xml:id
="
echoid-s3167
"
xml:space
="
preserve
"/>
</
p
>
<
figure
number
="
81
">
<
image
file
="
0124-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0124-01
"/>
</
figure
>
<
p
>
<
s
xml:id
="
echoid-s3168
"
xml:space
="
preserve
">Sit enim maior portio a b c, cu_i_us diameter b d, & </
s
>
<
s
xml:id
="
echoid-s3169
"
xml:space
="
preserve
">com-
<
lb
/>
pleatur circulus, uel ellipſis, ut portio reliqua ſit a e c, </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>