Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div272
"
type
="
section
"
level
="
1
"
n
="
92
">
<
p
>
<
s
xml:id
="
echoid-s4763
"
xml:space
="
preserve
">
<
pb
file
="
0190
"
n
="
190
"
rhead
="
FED. COMMANDINI
"/>
ctiones circuli ex prima propofitione ſphæricorum Theo
<
lb
/>
doſii: </
s
>
<
s
xml:id
="
echoid-s4764
"
xml:space
="
preserve
">unus quidem circa triangulum a b c deſcriptus: </
s
>
<
s
xml:id
="
echoid-s4765
"
xml:space
="
preserve
">al-
<
lb
/>
ter uero circa d e f: </
s
>
<
s
xml:id
="
echoid-s4766
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4767
"
xml:space
="
preserve
">quoniam triangula a b c, d e f æqua-
<
lb
/>
lia ſunt, & </
s
>
<
s
xml:id
="
echoid-s4768
"
xml:space
="
preserve
">ſimilia; </
s
>
<
s
xml:id
="
echoid-s4769
"
xml:space
="
preserve
">erunt ex prima, & </
s
>
<
s
xml:id
="
echoid-s4770
"
xml:space
="
preserve
">ſecunda propoſitione
<
lb
/>
duodecimi libri elementorum, circuli quoque inter ſe ſe
<
lb
/>
æquales. </
s
>
<
s
xml:id
="
echoid-s4771
"
xml:space
="
preserve
">poſtremo a centro g ad circulum a b c perpendi
<
lb
/>
cularis ducatur g h; </
s
>
<
s
xml:id
="
echoid-s4772
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4773
"
xml:space
="
preserve
">alia perpendicularis ducatur ad cir
<
lb
/>
culum d e f, quæ ſit g _k_; </
s
>
<
s
xml:id
="
echoid-s4774
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4775
"
xml:space
="
preserve
">iungantur a h, d k. </
s
>
<
s
xml:id
="
echoid-s4776
"
xml:space
="
preserve
">perſpicuum
<
lb
/>
eſt ex corollario primæ ſphæricorum Theodoſii, punctum
<
lb
/>
h centrum eſſe circuli a b c, & </
s
>
<
s
xml:id
="
echoid-s4777
"
xml:space
="
preserve
">k centrum circuli d e f. </
s
>
<
s
xml:id
="
echoid-s4778
"
xml:space
="
preserve
">Quo
<
lb
/>
niam igitur triangulorum g a h, g d K latus a g eſt æquale la
<
lb
/>
teri g d; </
s
>
<
s
xml:id
="
echoid-s4779
"
xml:space
="
preserve
">ſunt enim à centro ſphæræ ad ſuperficiem: </
s
>
<
s
xml:id
="
echoid-s4780
"
xml:space
="
preserve
">atque
<
lb
/>
eſt a h æquale d k: </
s
>
<
s
xml:id
="
echoid-s4781
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4782
"
xml:space
="
preserve
">ex ſexta propoſitione libri primi ſphæ
<
lb
/>
ricorum Theodoſii g h ipſi g K: </
s
>
<
s
xml:id
="
echoid-s4783
"
xml:space
="
preserve
">triangulum g a h æquale
<
lb
/>
erit, & </
s
>
<
s
xml:id
="
echoid-s4784
"
xml:space
="
preserve
">ſimile g d k triangulo: </
s
>
<
s
xml:id
="
echoid-s4785
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4786
"
xml:space
="
preserve
">angulus a g h æqualis an-
<
lb
/>
gulo d g _K_. </
s
>
<
s
xml:id
="
echoid-s4787
"
xml:space
="
preserve
">ſed anguli a g h, h g d ſunt æquales duobus re-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0190-01
"
xlink:href
="
note-0190-01a
"
xml:space
="
preserve
">13. primi</
note
>
ctis. </
s
>
<
s
xml:id
="
echoid-s4788
"
xml:space
="
preserve
">ergo & </
s
>
<
s
xml:id
="
echoid-s4789
"
xml:space
="
preserve
">ipſi h g d, d g k duobus rectis æquales erunt.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4790
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4791
"
xml:space
="
preserve
">idcirco h g, g _K_ una, atque eadem erit linea. </
s
>
<
s
xml:id
="
echoid-s4792
"
xml:space
="
preserve
">cum autem
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0190-02
"
xlink:href
="
note-0190-02a
"
xml:space
="
preserve
">14. primi</
note
>
h ſit centrũ circuli, & </
s
>
<
s
xml:id
="
echoid-s4793
"
xml:space
="
preserve
">tri-
<
lb
/>
<
figure
xlink:label
="
fig-0190-01
"
xlink:href
="
fig-0190-01a
"
number
="
141
">
<
image
file
="
0190-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0190-01
"/>
</
figure
>
anguli a b c grauitatis cen
<
lb
/>
trũ probabitur ex iis, quæ
<
lb
/>
in prima propoſitione hu
<
lb
/>
ius tradita funt. </
s
>
<
s
xml:id
="
echoid-s4794
"
xml:space
="
preserve
">quare g h
<
lb
/>
erit pyramidis a b c g axis.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4795
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4796
"
xml:space
="
preserve
">ob eandem cauſſam g k
<
lb
/>
axis pyramidis d e f g. </
s
>
<
s
xml:id
="
echoid-s4797
"
xml:space
="
preserve
">Ita-
<
lb
/>
que centrum grauitatis py
<
lb
/>
ramidis a b c g ſit púctum
<
lb
/>
l, & </
s
>
<
s
xml:id
="
echoid-s4798
"
xml:space
="
preserve
">pyramidis d e f g ſit m. </
s
>
<
s
xml:id
="
echoid-s4799
"
xml:space
="
preserve
">
<
lb
/>
Similiter ut ſupra demon-
<
lb
/>
ſtrabimus m g, g linter ſe æquales eſſe, & </
s
>
<
s
xml:id
="
echoid-s4800
"
xml:space
="
preserve
">punctum g graui
<
lb
/>
tatis centrum magnitudinis, quæ ex utriſque pyramidibus
<
lb
/>
conſtat. </
s
>
<
s
xml:id
="
echoid-s4801
"
xml:space
="
preserve
">eodem modo demonſtrabitur, quarumcunque
<
lb
/>
duarum pyramidum, quæ opponuntur, grauitatis </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>