Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
(5)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div199
"
type
="
section
"
level
="
1
"
n
="
65
">
<
p
>
<
s
xml:id
="
echoid-s3078
"
xml:space
="
preserve
">
<
pb
o
="
5
"
file
="
0121
"
n
="
121
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
quo ſcilicet ln, om conueniunt. </
s
>
<
s
xml:id
="
echoid-s3079
"
xml:space
="
preserve
">Poſtremo in figura
<
lb
/>
a p l q b r m s c t n u d x o y centrum grauitatis trian
<
lb
/>
guli pay, & </
s
>
<
s
xml:id
="
echoid-s3080
"
xml:space
="
preserve
">trapezii ploy eſtin linea a z: </
s
>
<
s
xml:id
="
echoid-s3081
"
xml:space
="
preserve
">trapeziorum
<
lb
/>
uero lqxo, q b d x centrum eſtin linea z k: </
s
>
<
s
xml:id
="
echoid-s3082
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3083
"
xml:space
="
preserve
">trapeziorũ
<
lb
/>
b r u d, r m n u in k φ: </
s
>
<
s
xml:id
="
echoid-s3084
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3085
"
xml:space
="
preserve
">denique trapezii m s t n; </
s
>
<
s
xml:id
="
echoid-s3086
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3087
"
xml:space
="
preserve
">triangu
<
lb
/>
li s c t in φ c. </
s
>
<
s
xml:id
="
echoid-s3088
"
xml:space
="
preserve
">quare magnitudinis ex his compoſitæ centrū
<
lb
/>
in linea a c conſiſtit. </
s
>
<
s
xml:id
="
echoid-s3089
"
xml:space
="
preserve
">Rurſus trianguli q b r, & </
s
>
<
s
xml:id
="
echoid-s3090
"
xml:space
="
preserve
">trapezii q l
<
lb
/>
m r centrum eſt in linea b χ: </
s
>
<
s
xml:id
="
echoid-s3091
"
xml:space
="
preserve
">trapeziorum l p s m, p a c s,
<
lb
/>
a y t c, y o n t in linea χ φ: </
s
>
<
s
xml:id
="
echoid-s3092
"
xml:space
="
preserve
">trapeziiq; </
s
>
<
s
xml:id
="
echoid-s3093
"
xml:space
="
preserve
">o x u n, & </
s
>
<
s
xml:id
="
echoid-s3094
"
xml:space
="
preserve
">trianguli
<
lb
/>
x d u centrum in ψ d. </
s
>
<
s
xml:id
="
echoid-s3095
"
xml:space
="
preserve
">totius ergo magnitudinis centrum
<
lb
/>
eſtin linea b d. </
s
>
<
s
xml:id
="
echoid-s3096
"
xml:space
="
preserve
">ex quo ſequitur, centrum grauitatis figuræ
<
lb
/>
a p l q b r m s c t n u d x o y eſſe punctū _K_, lineis ſcilicet a c,
<
lb
/>
b d commune, quæ omnia demonſtrare oportebat.</
s
>
<
s
xml:id
="
echoid-s3097
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div201
"
type
="
section
"
level
="
1
"
n
="
66
">
<
head
xml:id
="
echoid-head73
"
xml:space
="
preserve
">THE OREMA III. PROPOSITIO III.</
head
>
<
p
>
<
s
xml:id
="
echoid-s3098
"
xml:space
="
preserve
">Cuiuslibet portio-
<
lb
/>
<
figure
xlink:label
="
fig-0121-01
"
xlink:href
="
fig-0121-01a
"
number
="
77
">
<
image
file
="
0121-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0121-01
"/>
</
figure
>
nis circuli, & </
s
>
<
s
xml:id
="
echoid-s3099
"
xml:space
="
preserve
">ellipſis,
<
lb
/>
quæ dimidia non ſit
<
lb
/>
maior, centrum graui
<
lb
/>
tatis in portionis dia-
<
lb
/>
metro conſiſtit.</
s
>
<
s
xml:id
="
echoid-s3100
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3101
"
xml:space
="
preserve
">HOC eodem prorſus
<
lb
/>
modo demonſtrabitur,
<
lb
/>
quo in libro de centro gra
<
lb
/>
uitatis planorum ab Ar-
<
lb
/>
chimede demonſtratũ eſt,
<
lb
/>
in portione cõtenta recta
<
lb
/>
linea, & </
s
>
<
s
xml:id
="
echoid-s3102
"
xml:space
="
preserve
">rectanguli coni ſe
<
lb
/>
ctione grauitatis cẽtrum
<
lb
/>
eſſe in diametro portio-
<
lb
/>
nis. </
s
>
<
s
xml:id
="
echoid-s3103
"
xml:space
="
preserve
">Etita demonſtrari po
<
lb
/>
<
handwritten
xlink:label
="
hd-0121-02
"
xlink:href
="
hd-0121-02a
"
number
="
7
"/>
</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>