Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
(31)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div260
"
type
="
section
"
level
="
1
"
n
="
89
">
<
pb
o
="
31
"
file
="
0173
"
n
="
173
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
<
p
>
<
s
xml:id
="
echoid-s4324
"
xml:space
="
preserve
">SIT fruſtum pyramidis a e, cuius maior baſis triangu-
<
lb
/>
lum a b c, minor d e f: </
s
>
<
s
xml:id
="
echoid-s4325
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4326
"
xml:space
="
preserve
">oporteat ipſum plano, quod baſi
<
lb
/>
æquidiſtet, ita ſecare, ut ſectio ſit proportionalis inter triã
<
lb
/>
gula a b c, d e f. </
s
>
<
s
xml:id
="
echoid-s4327
"
xml:space
="
preserve
">Inueniatur inter lineas a b, d e media pro-
<
lb
/>
portionalis, quæ ſit b g: </
s
>
<
s
xml:id
="
echoid-s4328
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4329
"
xml:space
="
preserve
">à puncto g erigatur g h æquidi-
<
lb
/>
ſtans b e, ſecansq; </
s
>
<
s
xml:id
="
echoid-s4330
"
xml:space
="
preserve
">a d in h: </
s
>
<
s
xml:id
="
echoid-s4331
"
xml:space
="
preserve
">deinde per h ducatur planum
<
lb
/>
baſibus æ quidiſtans, cuius ſectio ſit triangulum h _k_ 1. </
s
>
<
s
xml:id
="
echoid-s4332
"
xml:space
="
preserve
">Dico
<
lb
/>
triangulum h K l proportionale eſſe inter triangula a b c,
<
lb
/>
d e f, hoc eſt triangulum a b c ad
<
lb
/>
<
figure
xlink:label
="
fig-0173-01
"
xlink:href
="
fig-0173-01a
"
number
="
127
">
<
image
file
="
0173-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0173-01
"/>
</
figure
>
triangulum h K l eandem habere
<
lb
/>
proportionem, quam triãgulum
<
lb
/>
h K l ad ipſum d e f. </
s
>
<
s
xml:id
="
echoid-s4333
"
xml:space
="
preserve
">Quoniã enim
<
lb
/>
lineæ a b, h K æquidiſtantium pla
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0173-01
"
xlink:href
="
note-0173-01a
"
xml:space
="
preserve
">16. unde
<
lb
/>
cimi</
note
>
norum ſectiones inter ſe æquidi-
<
lb
/>
ſtant: </
s
>
<
s
xml:id
="
echoid-s4334
"
xml:space
="
preserve
">atque æquidiſtant b _k_, g h:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4335
"
xml:space
="
preserve
">linea h _k_ ipſi g b eſt æqualis: </
s
>
<
s
xml:id
="
echoid-s4336
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4337
"
xml:space
="
preserve
">pro
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0173-02
"
xlink:href
="
note-0173-02a
"
xml:space
="
preserve
">34. primi</
note
>
pterea proportionalis inter a b,
<
lb
/>
d e. </
s
>
<
s
xml:id
="
echoid-s4338
"
xml:space
="
preserve
">quare ut a b ad h K, ita eſt h
<
emph
style
="
sc
">K</
emph
>
<
lb
/>
ad d e. </
s
>
<
s
xml:id
="
echoid-s4339
"
xml:space
="
preserve
">fiat ut h k ad d e, ita d e
<
lb
/>
ad aliam lineam, in qua ſit m. </
s
>
<
s
xml:id
="
echoid-s4340
"
xml:space
="
preserve
">erit
<
lb
/>
ex æquali ut a b ad d e, ita h k ad
<
lb
/>
m. </
s
>
<
s
xml:id
="
echoid-s4341
"
xml:space
="
preserve
">Et quoniam triangula a b c,
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0173-03
"
xlink:href
="
note-0173-03a
"
xml:space
="
preserve
">9. huius
<
lb
/>
corol.</
note
>
h K l, d e f ſimilia ſunt; </
s
>
<
s
xml:id
="
echoid-s4342
"
xml:space
="
preserve
">triangulū
<
lb
/>
a b c ad triangulum h k l eſt, ut li-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0173-04
"
xlink:href
="
note-0173-04a
"
xml:space
="
preserve
">20. ſexti</
note
>
nea a b ad lineam d e: </
s
>
<
s
xml:id
="
echoid-s4343
"
xml:space
="
preserve
">triangulũ
<
lb
/>
autem h k l ad ipſum d e f eſt, ut h _k_ ad m. </
s
>
<
s
xml:id
="
echoid-s4344
"
xml:space
="
preserve
">ergo tríangulum
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0173-05
"
xlink:href
="
note-0173-05a
"
xml:space
="
preserve
">11. quinti</
note
>
a b c ad triangulum h k l eandem proportionem habet,
<
lb
/>
quam triangulum h K l ad ipſum d e f. </
s
>
<
s
xml:id
="
echoid-s4345
"
xml:space
="
preserve
">Eodem modo in a-
<
lb
/>
liis fruſtis pyramidis idem demonſtrabitur.</
s
>
<
s
xml:id
="
echoid-s4346
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4347
"
xml:space
="
preserve
">Sit fruſtum coni, uel coni portionis a d: </
s
>
<
s
xml:id
="
echoid-s4348
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4349
"
xml:space
="
preserve
">ſecetur plano
<
lb
/>
per axem, cuius ſectio ſit a b c d, ita ut maior ipſius baſis ſit
<
lb
/>
circulus, uel ellipſis circa diametrum a b; </
s
>
<
s
xml:id
="
echoid-s4350
"
xml:space
="
preserve
">minor circa c d.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4351
"
xml:space
="
preserve
">Rurſus inter lineas a b, c d inueniatur proportionalis b e: </
s
>
<
s
xml:id
="
echoid-s4352
"
xml:space
="
preserve
">
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s4353
"
xml:space
="
preserve
">ab e ducta e ſ æquid_i_ſtante b d, quæ lineam c a in f </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>