Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of Notes
<
1 - 8
[out of range]
>
[Note]
Page: 62
[Note]
Page: 62
[Note]
Page: 62
[Note]
Page: 62
[Note]
Page: 62
[Note]
Page: 62
[Note]
Page: 62
[Note]
Page: 62
[Note]
Page: 62
[Note]
Page: 62
[Note]
Page: 63
[Note]
Page: 63
[Note]
Page: 63
[Note]
Page: 64
[Note]
Page: 65
[Note]
Page: 65
[Note]
Page: 65
[Note]
Page: 65
[Note]
Page: 67
[Note]
Page: 67
[Note]
Page: 67
[Note]
Page: 67
[Note]
Page: 67
[Note]
Page: 67
[Note]
Page: 67
[Note]
Page: 67
[Note]
Page: 68
[Note]
Page: 68
[Note]
Page: 68
[Note]
Page: 68
<
1 - 8
[out of range]
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div226
"
type
="
section
"
level
="
1
"
n
="
75
">
<
p
>
<
s
xml:id
="
echoid-s3694
"
xml:space
="
preserve
">
<
pb
file
="
0146
"
n
="
146
"
rhead
="
FED. COMMANDINI
"/>
partes d. </
s
>
<
s
xml:id
="
echoid-s3695
"
xml:space
="
preserve
">in pyramide igitur inſcripta erit quædam figura,
<
lb
/>
ex priſinatibus æqualem altitudinem habentibus cóſtans,
<
lb
/>
ad partes e: </
s
>
<
s
xml:id
="
echoid-s3696
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3697
"
xml:space
="
preserve
">altera circumſcripta ad partes d. </
s
>
<
s
xml:id
="
echoid-s3698
"
xml:space
="
preserve
">Sed unum-
<
lb
/>
quodque eorum priſmatum, quæ in figura inſcripta conti-
<
lb
/>
nentur, æquale eſt priſmati, quod ab eodem fit triangulo in
<
lb
/>
figura circumſcripta: </
s
>
<
s
xml:id
="
echoid-s3699
"
xml:space
="
preserve
">nam priſma p q priſmati p o eſt æ-
<
lb
/>
quale; </
s
>
<
s
xml:id
="
echoid-s3700
"
xml:space
="
preserve
">priſma s t æquale priſmati s r; </
s
>
<
s
xml:id
="
echoid-s3701
"
xml:space
="
preserve
">priſma x y priſmati
<
lb
/>
x u; </
s
>
<
s
xml:id
="
echoid-s3702
"
xml:space
="
preserve
">priſma η θ priſinati η z; </
s
>
<
s
xml:id
="
echoid-s3703
"
xml:space
="
preserve
">priſina μ ν priſmati μ λ; </
s
>
<
s
xml:id
="
echoid-s3704
"
xml:space
="
preserve
">priſ-
<
lb
/>
ma ρ σ priſmati ρ π; </
s
>
<
s
xml:id
="
echoid-s3705
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3706
"
xml:space
="
preserve
">priſma φ χ priſinati φ τ æquale. </
s
>
<
s
xml:id
="
echoid-s3707
"
xml:space
="
preserve
">re-
<
lb
/>
linquitur ergo, ut circumſcripta figura exuperet inſcriptã
<
lb
/>
priſmate, quod baſim habet a b c triangulum, & </
s
>
<
s
xml:id
="
echoid-s3708
"
xml:space
="
preserve
">axem e f.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3709
"
xml:space
="
preserve
">Illud uero minus eſt ſolida magnitudine propoſita. </
s
>
<
s
xml:id
="
echoid-s3710
"
xml:space
="
preserve
">Eadȩ
<
lb
/>
ratione inſcribetur, & </
s
>
<
s
xml:id
="
echoid-s3711
"
xml:space
="
preserve
">circumſcribetur ſolida figura in py-
<
lb
/>
ramide, quæ quadrilateram, uel plurilaterã baſim habeat.</
s
>
<
s
xml:id
="
echoid-s3712
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div227
"
type
="
section
"
level
="
1
"
n
="
76
">
<
head
xml:id
="
echoid-head83
"
xml:space
="
preserve
">PROBLEMA II. PROPOSITIO XI.</
head
>
<
p
>
<
s
xml:id
="
echoid-s3713
"
xml:space
="
preserve
">
<
emph
style
="
sc
">Dato</
emph
>
cono, fieri poteſt, ut figura ſolida in-
<
lb
/>
ſcribatur, & </
s
>
<
s
xml:id
="
echoid-s3714
"
xml:space
="
preserve
">altera circumſcribatur ex cylindris
<
lb
/>
æqualem habentibus altitudinem, ita ut circum-
<
lb
/>
ſcripta ſuperet inſcriptam, magnitudine, quæ ſo-
<
lb
/>
lida magnitudine propoſita ſit minor.</
s
>
<
s
xml:id
="
echoid-s3715
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3716
"
xml:space
="
preserve
">SIT conus, cuius axis b d: </
s
>
<
s
xml:id
="
echoid-s3717
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3718
"
xml:space
="
preserve
">ſecetur plano per axem
<
lb
/>
ducto, ut ſectio ſit triangulum a b c: </
s
>
<
s
xml:id
="
echoid-s3719
"
xml:space
="
preserve
">intelligaturq; </
s
>
<
s
xml:id
="
echoid-s3720
"
xml:space
="
preserve
">cylin-
<
lb
/>
drus, qui baſim eandem, & </
s
>
<
s
xml:id
="
echoid-s3721
"
xml:space
="
preserve
">eundem axem habeat. </
s
>
<
s
xml:id
="
echoid-s3722
"
xml:space
="
preserve
">Hoc igi-
<
lb
/>
tur cylindro continenter bifariam ſecto, relinquetur cylin
<
lb
/>
drus minor ſolida magnitudine propoſita. </
s
>
<
s
xml:id
="
echoid-s3723
"
xml:space
="
preserve
">Sit autem is cy
<
lb
/>
lindrus, qui baſim habet circulum circa diametrum a c, & </
s
>
<
s
xml:id
="
echoid-s3724
"
xml:space
="
preserve
">
<
lb
/>
axem d e. </
s
>
<
s
xml:id
="
echoid-s3725
"
xml:space
="
preserve
">Itaque diuidatur b d in partes æquales ipſi d e
<
lb
/>
in punctis f g h _K_lm: </
s
>
<
s
xml:id
="
echoid-s3726
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3727
"
xml:space
="
preserve
">per ea ducantur plana conum ſe-
<
lb
/>
cantia; </
s
>
<
s
xml:id
="
echoid-s3728
"
xml:space
="
preserve
">quæ baſi æquidiſtent. </
s
>
<
s
xml:id
="
echoid-s3729
"
xml:space
="
preserve
">erunt ſectiones circuli, cen-
<
lb
/>
tra in axi habentes, ut in primo libro conicorum, </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>