Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of Notes
<
1 - 8
[out of range]
>
[Note]
Page: 40
[Note]
Page: 40
[Note]
Page: 41
[Note]
Page: 42
[Note]
Page: 42
[Note]
Page: 42
[Note]
Page: 43
[Note]
Page: 43
[Note]
Page: 43
[Note]
Page: 44
[Note]
Page: 44
[Note]
Page: 44
[Note]
Page: 45
[Note]
Page: 45
[Note]
Page: 45
[Note]
Page: 45
[Note]
Page: 46
[Note]
Page: 46
[Note]
Page: 47
[Note]
Page: 47
[Note]
Page: 48
[Note]
Page: 48
[Note]
Page: 49
[Note]
Page: 49
[Note]
Page: 49
[Note]
Page: 52
[Note]
Page: 52
[Note]
Page: 52
[Note]
Page: 52
[Note]
Page: 53
<
1 - 8
[out of range]
>
page
|<
<
(18)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div74
"
type
="
section
"
level
="
1
"
n
="
30
">
<
pb
o
="
18
"
file
="
0047
"
n
="
47
"
rhead
="
DE IIS QVAE VEH. IN AQVA.
"/>
<
p
>
<
s
xml:id
="
echoid-s1025
"
xml:space
="
preserve
">Itaque quoniam no ad f ω maiorem habetproportio-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0047-01
"
xlink:href
="
note-0047-01a
"
xml:space
="
preserve
">B</
note
>
nem, quam ad eam, quæ uſque ad axem.</
s
>
<
s
xml:id
="
echoid-s1026
"
xml:space
="
preserve
">] _Habet enim diame-_
<
lb
/>
_ter portioms n o ad f ω proportionem eandem, quam quindeeim ad_
<
lb
/>
_quatuor; </
s
>
<
s
xml:id
="
echoid-s1027
"
xml:space
="
preserve
">ad eam uero, quæ uſque ad axem minorem proportionem_
<
lb
/>
_habere ponitur, quàm quindecim ad quatuor. </
s
>
<
s
xml:id
="
echoid-s1028
"
xml:space
="
preserve
">quare n o ad f ω ma_
<
lb
/>
_iorem habebit proportionem, quàm ad eam, quæ uſque ad axem: </
s
>
<
s
xml:id
="
echoid-s1029
"
xml:space
="
preserve
">&_</
s
>
<
s
xml:id
="
echoid-s1030
"
xml:space
="
preserve
">
<
lb
/>
_propterea quæ uſque ad axem ipſa f ω maior erit_.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s1031
"
xml:space
="
preserve
"/>
</
p
>
<
note
position
="
right
"
xml:space
="
preserve
">10. quinti</
note
>
<
p
>
<
s
xml:id
="
echoid-s1032
"
xml:space
="
preserve
">Quoniam ergo in portione a p o l, quæ continetur re-
<
lb
/>
cta linea, & </
s
>
<
s
xml:id
="
echoid-s1033
"
xml:space
="
preserve
">rectanguli coni ſectione, _k_ ω quidem æ quidi-
<
lb
/>
ſtans eſt ipſi a l; </
s
>
<
s
xml:id
="
echoid-s1034
"
xml:space
="
preserve
">p i uero diametro æquidiſtat; </
s
>
<
s
xml:id
="
echoid-s1035
"
xml:space
="
preserve
">ſecaturq;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s1036
"
xml:space
="
preserve
">ab ipſa k ω in h: </
s
>
<
s
xml:id
="
echoid-s1037
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1038
"
xml:space
="
preserve
">a c æquidiſtat contingenti in p neceſ-
<
lb
/>
ſarium eſt ipſam p i ad p h uel eandem proportionem ha
<
lb
/>
bere, quam habet n ω ad ω o, uel maiorem. </
s
>
<
s
xml:id
="
echoid-s1039
"
xml:space
="
preserve
">hoc enim iam
<
lb
/>
demonſtratum eſt] _Vbi hoc demonſtratum ſit uel ab ipſo Ar-_
<
lb
/>
_chimede, uel ab alio, numdum apparet, quocircanos demonstra-_
<
lb
/>
_tionem afferemus, poſteaquam non nulla, quæ ad eam pertinent ex-_
<
lb
/>
_plicauerimus_.</
s
>
<
s
xml:id
="
echoid-s1040
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div77
"
type
="
section
"
level
="
1
"
n
="
31
">
<
head
xml:id
="
echoid-head36
"
xml:space
="
preserve
">LEMMAI.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s1041
"
xml:space
="
preserve
">Sint lineæ a b, a c angulum b a c continentes: </
s
>
<
s
xml:id
="
echoid-s1042
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1043
"
xml:space
="
preserve
">à
<
lb
/>
puncto d, quod in linea a c ſumptum ſit, ducantur d e,
<
lb
/>
d f utcunque ad ipſam a b. </
s
>
<
s
xml:id
="
echoid-s1044
"
xml:space
="
preserve
">Sumptis uero in eadem li.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s1045
"
xml:space
="
preserve
">nea quotlibet punctis g l, ducantur g h, l m ipſi d e
<
lb
/>
æquidistantes; </
s
>
<
s
xml:id
="
echoid-s1046
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1047
"
xml:space
="
preserve
">g k, l n æquidiſtantes f d. </
s
>
<
s
xml:id
="
echoid-s1048
"
xml:space
="
preserve
">deinde à
<
lb
/>
punctis d, g uſque ad lineam m l ducantur, d o p qui
<
lb
/>
dem ſecans g h in o; </
s
>
<
s
xml:id
="
echoid-s1049
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1050
"
xml:space
="
preserve
">g q, quæ æquidistent ipſi b a. </
s
>
<
s
xml:id
="
echoid-s1051
"
xml:space
="
preserve
">
<
lb
/>
Dico lineas, quæ inter æquidiſtantes ipſi f d ad eas, quæ
<
lb
/>
inter æquidiſtantes d e interiiciuntur, uidelicet k n ad g q,
<
lb
/>
uel ad o p; </
s
>
<
s
xml:id
="
echoid-s1052
"
xml:space
="
preserve
">f k ad d o; </
s
>
<
s
xml:id
="
echoid-s1053
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1054
"
xml:space
="
preserve
">f n ad d p eandem inter ſe ſe
<
lb
/>
proportionem habere: </
s
>
<
s
xml:id
="
echoid-s1055
"
xml:space
="
preserve
">nempe eam, quã habet a f ad a e.</
s
>
<
s
xml:id
="
echoid-s1056
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>