Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of Notes
<
1 - 8
[out of range]
>
[Note]
Page: 58
[Note]
Page: 58
[Note]
Page: 58
[Note]
Page: 58
[Note]
Page: 58
[Note]
Page: 59
[Note]
Page: 60
[Note]
Page: 60
[Note]
Page: 60
[Note]
Page: 61
[Note]
Page: 61
[Note]
Page: 61
[Note]
Page: 61
[Note]
Page: 61
[Note]
Page: 61
[Note]
Page: 61
[Note]
Page: 61
[Note]
Page: 61
[Note]
Page: 61
[Note]
Page: 61
[Note]
Page: 62
[Note]
Page: 62
[Note]
Page: 62
[Note]
Page: 62
[Note]
Page: 62
[Note]
Page: 62
[Note]
Page: 62
[Note]
Page: 62
[Note]
Page: 62
[Note]
Page: 62
<
1 - 8
[out of range]
>
page
|<
<
(25)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div247
"
type
="
section
"
level
="
1
"
n
="
85
">
<
pb
o
="
25
"
file
="
0161
"
n
="
161
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
<
p
>
<
s
xml:id
="
echoid-s4003
"
xml:space
="
preserve
">Sint duo priſmata a e, a f, quorum eadem baſis quadri-
<
lb
/>
latera a b c d: </
s
>
<
s
xml:id
="
echoid-s4004
"
xml:space
="
preserve
">ſitq; </
s
>
<
s
xml:id
="
echoid-s4005
"
xml:space
="
preserve
">priſmatis a e altitudo e g; </
s
>
<
s
xml:id
="
echoid-s4006
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4007
"
xml:space
="
preserve
">priſmatis
<
lb
/>
a f altitudo f h. </
s
>
<
s
xml:id
="
echoid-s4008
"
xml:space
="
preserve
">Dico priſma a e ad priſma a f eam habere
<
lb
/>
proportionem, quam e g ad f h. </
s
>
<
s
xml:id
="
echoid-s4009
"
xml:space
="
preserve
">iungatur enim a c: </
s
>
<
s
xml:id
="
echoid-s4010
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4011
"
xml:space
="
preserve
">in
<
lb
/>
unoquoque priſmate duo priſmata intelligantur, quorum
<
lb
/>
baſes ſint triangu
<
lb
/>
<
figure
xlink:label
="
fig-0161-01
"
xlink:href
="
fig-0161-01a
"
number
="
115
">
<
image
file
="
0161-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0161-01
"/>
</
figure
>
la a b c, a c d. </
s
>
<
s
xml:id
="
echoid-s4012
"
xml:space
="
preserve
">habe
<
lb
/>
bunt duo priſma-
<
lb
/>
te in eadem baſi
<
lb
/>
a b c conſtituta,
<
lb
/>
proportionem eã
<
lb
/>
dem, quam ipſo-
<
lb
/>
rum altitudines e
<
lb
/>
g, f h, exiam de-
<
lb
/>
monſtratis. </
s
>
<
s
xml:id
="
echoid-s4013
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4014
"
xml:space
="
preserve
">ſi-
<
lb
/>
militer alia duo,
<
lb
/>
quæ ſunt in baſi a
<
lb
/>
c d. </
s
>
<
s
xml:id
="
echoid-s4015
"
xml:space
="
preserve
">quare totum priſma a e ad priſma a f eandem propor
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0161-01
"
xlink:href
="
note-0161-01a
"
xml:space
="
preserve
">12. quinti</
note
>
tionem habebit, quam altitudo e g ad f h altitudinem.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4016
"
xml:space
="
preserve
">Quòd cum priſmata ſint pyramidum tripla, & </
s
>
<
s
xml:id
="
echoid-s4017
"
xml:space
="
preserve
">ipſæ pyrami
<
lb
/>
des, quarum eadem eſt baſis quadrilatera, & </
s
>
<
s
xml:id
="
echoid-s4018
"
xml:space
="
preserve
">altitudo priſ-
<
lb
/>
matum altitudini æqualis, eam inter ſe proportionem ha-
<
lb
/>
bebunt, quam altitudines.</
s
>
<
s
xml:id
="
echoid-s4019
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4020
"
xml:space
="
preserve
">Si uero priſmata baſes æquales habeant, nõ eaſdem, ſint
<
lb
/>
duo eiuſmodi priſmata a e, f l: </
s
>
<
s
xml:id
="
echoid-s4021
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4022
"
xml:space
="
preserve
">ſit baſis priſmatis a e qua
<
lb
/>
drilaterum a b c d; </
s
>
<
s
xml:id
="
echoid-s4023
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4024
"
xml:space
="
preserve
">priſmatis f l quadrilaterum f g h k.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4025
"
xml:space
="
preserve
">Dico priſma a e ad priſma f l ita eſſe, ut altitudo illius ad
<
lb
/>
huius altitudinem. </
s
>
<
s
xml:id
="
echoid-s4026
"
xml:space
="
preserve
">nam ſi altitudo ſit eadem, intelligãtur
<
lb
/>
duæ pyramides a b c d e, f g h k l. </
s
>
<
s
xml:id
="
echoid-s4027
"
xml:space
="
preserve
">quæ ĩter ſe æquales erũt,
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0161-02
"
xlink:href
="
note-0161-02a
"
xml:space
="
preserve
">6. duode
<
lb
/>
cimi</
note
>
cum æ quales baſes, & </
s
>
<
s
xml:id
="
echoid-s4028
"
xml:space
="
preserve
">altitudinem eandem habeant. </
s
>
<
s
xml:id
="
echoid-s4029
"
xml:space
="
preserve
">quare
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s4030
"
xml:space
="
preserve
">priſmata a e, f l, quæ ſunt harù pyramidum tripla, æqua-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0161-03
"
xlink:href
="
note-0161-03a
"
xml:space
="
preserve
">15. quintĩ</
note
>
lia ſint neceſſe eſt. </
s
>
<
s
xml:id
="
echoid-s4031
"
xml:space
="
preserve
">ex quibus perſpicue conſtat propoſitũ.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4032
"
xml:space
="
preserve
">Si uero altitudo priſmatis f l ſit maior, à priſmate f l ab-
<
lb
/>
ſcindatur priſma fm, quod æque altum ſit, atq; </
s
>
<
s
xml:id
="
echoid-s4033
"
xml:space
="
preserve
">ipſum a e.</
s
>
<
s
xml:id
="
echoid-s4034
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>