Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of Notes
<
1 - 8
[out of range]
>
[Note]
Page: 61
[Note]
Page: 61
[Note]
Page: 61
[Note]
Page: 61
[Note]
Page: 61
[Note]
Page: 61
[Note]
Page: 61
[Note]
Page: 61
[Note]
Page: 61
[Note]
Page: 61
[Note]
Page: 62
[Note]
Page: 62
[Note]
Page: 62
[Note]
Page: 62
[Note]
Page: 62
[Note]
Page: 62
[Note]
Page: 62
[Note]
Page: 62
[Note]
Page: 62
[Note]
Page: 62
[Note]
Page: 63
[Note]
Page: 63
[Note]
Page: 63
[Note]
Page: 64
[Note]
Page: 65
[Note]
Page: 65
[Note]
Page: 65
[Note]
Page: 65
[Note]
Page: 67
[Note]
Page: 67
<
1 - 8
[out of range]
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div216
"
type
="
section
"
level
="
1
"
n
="
73
">
<
p
>
<
s
xml:id
="
echoid-s3559
"
xml:space
="
preserve
">
<
pb
file
="
0140
"
n
="
140
"
rhead
="
FED. COMMANDINI
"/>
habeat circulus, uel ellipſis g h ad aliud ſpacium, in quo u:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3560
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3561
"
xml:space
="
preserve
">in circulo, uel ellipſi plane deſcribatur rectilinea figura,
<
lb
/>
ita ut tãdem relinquãtur portiones minores ſpacio u, quæ
<
lb
/>
ſit o p g q r s h t: </
s
>
<
s
xml:id
="
echoid-s3562
"
xml:space
="
preserve
">deſcriptaq; </
s
>
<
s
xml:id
="
echoid-s3563
"
xml:space
="
preserve
">ſimili figura in oppoſitis pla-
<
lb
/>
nis c d, f e, per lineas ſibi ipſis reſpondentes plana ducãtur. </
s
>
<
s
xml:id
="
echoid-s3564
"
xml:space
="
preserve
">
<
lb
/>
Itaque cylindrus, uel cylindri portio diuiditur in priſma,
<
lb
/>
cuius quidem baſis eſt figura rectilinea iam dicta, centrum
<
lb
/>
que grauitatis punctum K: </
s
>
<
s
xml:id
="
echoid-s3565
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3566
"
xml:space
="
preserve
">in multa ſolida, quæ pro baſi
<
lb
/>
bus habent relictas portiones, quas nos ſolidas portiones
<
lb
/>
appellabimus. </
s
>
<
s
xml:id
="
echoid-s3567
"
xml:space
="
preserve
">cum igitur portiones ſint minores ſpacio
<
lb
/>
u, circulus, uel ellipſis g h ad portiones maiorem propor-
<
lb
/>
tionem habebit, quàm linea m k ad K l. </
s
>
<
s
xml:id
="
echoid-s3568
"
xml:space
="
preserve
">fiat n k ad K l, ut
<
lb
/>
circulus uel ellipſis g h ad ipſas portiones. </
s
>
<
s
xml:id
="
echoid-s3569
"
xml:space
="
preserve
">Sed ut circulus
<
lb
/>
uel ellipſis g h ad figuram rectilineam in ipſa deſcri-
<
lb
/>
ptam, ita eſt cylindrus uel cylindri portio c e ad priſma,
<
lb
/>
quod rectilineam figuram pro baſi habet, & </
s
>
<
s
xml:id
="
echoid-s3570
"
xml:space
="
preserve
">altitudinem
<
lb
/>
æqualem; </
s
>
<
s
xml:id
="
echoid-s3571
"
xml:space
="
preserve
">id, quod infra demonſtrabitur, ergo per conuer
<
lb
/>
ſionem rationis, ut circulus, uel ellipſis g h ad portiones re
<
lb
/>
lictas, ita cylindrus, uel cylindri portio c e ad ſolidas por-
<
lb
/>
tiones, quare cylindrus uel cylindri portio ad ſolidas por-
<
lb
/>
tiones eandem proportionem habet, quam linea n k a d _k_
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s3572
"
xml:space
="
preserve
">diuidendo priſma, cuius baſis eſt rectilinea figura ad ſo-
<
lb
/>
lidas portiones eandem proportionem habet, quam n lad
<
lb
/>
1 _k_. </
s
>
<
s
xml:id
="
echoid-s3573
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3574
"
xml:space
="
preserve
">quoniam a cylindro uel cylindri portione, cuius gra-
<
lb
/>
uitatis centrum eſt l, aufertur priſma baſim habens rectili-
<
lb
/>
neam figurã, cuius centrũ grauitatis eſt _K_: </
s
>
<
s
xml:id
="
echoid-s3575
"
xml:space
="
preserve
">reſiduæ magnitu
<
lb
/>
dinis ex ſolidis portionibus cõpoſitæ grauitatis cẽtrũ erit
<
lb
/>
in linea k l protracta, & </
s
>
<
s
xml:id
="
echoid-s3576
"
xml:space
="
preserve
">in puncto n; </
s
>
<
s
xml:id
="
echoid-s3577
"
xml:space
="
preserve
">quod eſt abſurdū. </
s
>
<
s
xml:id
="
echoid-s3578
"
xml:space
="
preserve
">relin
<
lb
/>
quitur ergo, ut cẽtrum grauitatis cylindri; </
s
>
<
s
xml:id
="
echoid-s3579
"
xml:space
="
preserve
">uel cylin dri por
<
lb
/>
tionis ſit punctũ k. </
s
>
<
s
xml:id
="
echoid-s3580
"
xml:space
="
preserve
">quæ omnia demonſtrãda propoſuimus.</
s
>
<
s
xml:id
="
echoid-s3581
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3582
"
xml:space
="
preserve
">At uero cylindrum, uel cylindri portionẽ ce
<
lb
/>
ad priſma, cuius baſis eſt rectilinea figura in ſpa-
<
lb
/>
cio g h deſcripta, & </
s
>
<
s
xml:id
="
echoid-s3583
"
xml:space
="
preserve
">altitudo æqualis; </
s
>
<
s
xml:id
="
echoid-s3584
"
xml:space
="
preserve
">eandem </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>