Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of Notes
<
1 - 8
[out of range]
>
[Note]
Page: 67
[Note]
Page: 67
[Note]
Page: 67
[Note]
Page: 67
[Note]
Page: 67
[Note]
Page: 67
[Note]
Page: 68
[Note]
Page: 68
[Note]
Page: 68
[Note]
Page: 68
[Note]
Page: 69
[Note]
Page: 69
[Note]
Page: 69
[Note]
Page: 69
[Note]
Page: 69
[Note]
Page: 69
[Note]
Page: 70
[Note]
Page: 70
[Note]
Page: 70
[Note]
Page: 70
[Note]
Page: 70
[Note]
Page: 70
[Note]
Page: 70
[Note]
Page: 71
[Note]
Page: 71
[Note]
Page: 71
[Note]
Page: 71
[Note]
Page: 71
[Note]
Page: 71
[Note]
Page: 71
<
1 - 8
[out of range]
>
page
|<
<
(37)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div268
"
type
="
section
"
level
="
1
"
n
="
91
">
<
p
>
<
s
xml:id
="
echoid-s4629
"
xml:space
="
preserve
">
<
pb
o
="
37
"
file
="
0185
"
n
="
185
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
ducta fuerìnt, ira ut in unum punctum y coeant, erunt triã
<
lb
/>
gala u y l, x y p, t y _k_ inter ſe ſimilia: </
s
>
<
s
xml:id
="
echoid-s4630
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4631
"
xml:space
="
preserve
">ſimilia etiam triangu
<
lb
/>
la l y r, p y s, _k_ y q. </
s
>
<
s
xml:id
="
echoid-s4632
"
xml:space
="
preserve
">quare ut in 19 huius, demonſtrabitur
<
lb
/>
x p, ad p s: </
s
>
<
s
xml:id
="
echoid-s4633
"
xml:space
="
preserve
">itemq; </
s
>
<
s
xml:id
="
echoid-s4634
"
xml:space
="
preserve
">t k ad _k_ q èandem habere proportionẽ,
<
lb
/>
quam u l ad l r. </
s
>
<
s
xml:id
="
echoid-s4635
"
xml:space
="
preserve
">Sed ut u l ad l r, ita eſt triangulum a b c ad
<
lb
/>
triangulum a c d: </
s
>
<
s
xml:id
="
echoid-s4636
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4637
"
xml:space
="
preserve
">ut t k ad K q, ita triangulum e f g ad
<
lb
/>
triangulum e g h. </
s
>
<
s
xml:id
="
echoid-s4638
"
xml:space
="
preserve
">Vt autem triangulum a b c ad triangu-
<
lb
/>
lum a c d, ita pyramis a b c y ad pyramidem a c d y. </
s
>
<
s
xml:id
="
echoid-s4639
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4640
"
xml:space
="
preserve
">ut
<
lb
/>
triangulum e f g ad triangulum e g h, ita pyramis e f g y
<
lb
/>
ad pyramidem e g h y; </
s
>
<
s
xml:id
="
echoid-s4641
"
xml:space
="
preserve
">ergo ut pyramis a b c y ad pyramidẽ
<
lb
/>
a c d y, ita pyramis e f g y ad pyramidem e g h y. </
s
>
<
s
xml:id
="
echoid-s4642
"
xml:space
="
preserve
">reliquum
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0185-01
"
xlink:href
="
note-0185-01a
"
xml:space
="
preserve
">19. quinti</
note
>
igitur fruſtũ l f ad reliquum fruſtũ l h eſt ut pyramis a b c y
<
lb
/>
ad pyramidem a c d y, hoc eſt ut u l ad l r, & </
s
>
<
s
xml:id
="
echoid-s4643
"
xml:space
="
preserve
">ut x p ad p s.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4644
"
xml:space
="
preserve
">Quòd cum fruſti l f centrum grauitatis ſit s: </
s
>
<
s
xml:id
="
echoid-s4645
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4646
"
xml:space
="
preserve
">fruſti l h ſit
<
lb
/>
centrum x: </
s
>
<
s
xml:id
="
echoid-s4647
"
xml:space
="
preserve
">conſtat punctum p totius fruſti a g grauitatis
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0185-02
"
xlink:href
="
note-0185-02a
"
xml:space
="
preserve
">8. Archi-
<
lb
/>
medis.</
note
>
eſſe centrum. </
s
>
<
s
xml:id
="
echoid-s4648
"
xml:space
="
preserve
">Eodem modo fiet demonſtratio etiam in
<
lb
/>
aliis pyramidibus.</
s
>
<
s
xml:id
="
echoid-s4649
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4650
"
xml:space
="
preserve
">Sit fruſtum a d à cono, uel coni portione abſciſſum, cu-
<
lb
/>
ius maior baſis circulus, uel ellipſis circa diametrum a b;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4651
"
xml:space
="
preserve
">minor circa diametrum c d: </
s
>
<
s
xml:id
="
echoid-s4652
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4653
"
xml:space
="
preserve
">axis e f. </
s
>
<
s
xml:id
="
echoid-s4654
"
xml:space
="
preserve
">diuidatur autẽ e f
<
lb
/>
in g, ita ut e g ad g f eandem proportionem habeat, quam
<
lb
/>
duplum diametri a b unà cum diametro c d ad duplum c d
<
lb
/>
unà cum a b. </
s
>
<
s
xml:id
="
echoid-s4655
"
xml:space
="
preserve
">Sitq; </
s
>
<
s
xml:id
="
echoid-s4656
"
xml:space
="
preserve
">g h quarta pars lineæ g e: </
s
>
<
s
xml:id
="
echoid-s4657
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4658
"
xml:space
="
preserve
">ſit ſ K item
<
lb
/>
quarta pars totius f e axis. </
s
>
<
s
xml:id
="
echoid-s4659
"
xml:space
="
preserve
">Rurfus quam proportionem
<
lb
/>
habet fruſtum a d ad conum, uel coni portionem, in eadẽ
<
lb
/>
baſi, & </
s
>
<
s
xml:id
="
echoid-s4660
"
xml:space
="
preserve
">æquali altitudine, habeat linea _k_ h ad h l. </
s
>
<
s
xml:id
="
echoid-s4661
"
xml:space
="
preserve
">Dico pun-
<
lb
/>
ctum l fruſti a d grauitatis centrum eſſe. </
s
>
<
s
xml:id
="
echoid-s4662
"
xml:space
="
preserve
">Si enim fieri po-
<
lb
/>
teſt, ſit m centrum: </
s
>
<
s
xml:id
="
echoid-s4663
"
xml:space
="
preserve
">producaturq; </
s
>
<
s
xml:id
="
echoid-s4664
"
xml:space
="
preserve
">l m extra fruſtum in n: </
s
>
<
s
xml:id
="
echoid-s4665
"
xml:space
="
preserve
">
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s4666
"
xml:space
="
preserve
">ut n l ad l m, ita fiat circulus, uel ellipſis circa diametrũ
<
lb
/>
a b ad aliud ſpacium, in quo ſit o. </
s
>
<
s
xml:id
="
echoid-s4667
"
xml:space
="
preserve
">Itaque in circulo, uel
<
lb
/>
ellipſi circa diametrum a b rectilinea figura plane deſcri-
<
lb
/>
batur, ita ut quæ relinquuntur portiones ſint o ſpacio mi-
<
lb
/>
nores: </
s
>
<
s
xml:id
="
echoid-s4668
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4669
"
xml:space
="
preserve
">inteiligatur pyramis a p b, baſim habens rectili-
<
lb
/>
neam figuram in circulo, uel ellipſi a b deſcriptam: </
s
>
<
s
xml:id
="
echoid-s4670
"
xml:space
="
preserve
">à </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>