Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of Notes
<
1 - 8
[out of range]
>
[Note]
Page: 31
[Note]
Page: 31
[Note]
Page: 31
[Note]
Page: 32
[Note]
Page: 32
[Note]
Page: 32
[Note]
Page: 32
[Note]
Page: 32
[Note]
Page: 32
[Note]
Page: 32
[Note]
Page: 33
[Note]
Page: 33
[Note]
Page: 33
[Note]
Page: 33
[Note]
Page: 34
[Note]
Page: 34
[Note]
Page: 35
[Note]
Page: 35
[Note]
Page: 35
[Note]
Page: 35
[Note]
Page: 35
[Note]
Page: 35
[Note]
Page: 36
[Note]
Page: 36
[Note]
Page: 38
[Note]
Page: 38
[Note]
Page: 38
[Note]
Page: 38
[Note]
Page: 39
[Note]
Page: 39
<
1 - 8
[out of range]
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div263
"
type
="
section
"
level
="
1
"
n
="
90
">
<
p
>
<
s
xml:id
="
echoid-s4380
"
xml:space
="
preserve
">
<
pb
file
="
0176
"
n
="
176
"
rhead
="
FED. COMMANDINI
"/>
pyramidem, uel conum, uel coni portionem candem pro-
<
lb
/>
portionem habet, quam baſes ab, cd unà cum e ſ ad ba-
<
lb
/>
ſim a b. </
s
>
<
s
xml:id
="
echoid-s4381
"
xml:space
="
preserve
">quod demonſtrare uolebamus.</
s
>
<
s
xml:id
="
echoid-s4382
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4383
"
xml:space
="
preserve
">Fruſtum uero a d æquale eſſe pyramidi, uel co
<
lb
/>
no, uel coni portioni, cuius baſis conſtat ex baſi-
<
lb
/>
bus a b, c d, e f, & </
s
>
<
s
xml:id
="
echoid-s4384
"
xml:space
="
preserve
">altitudo fruſti altitudini eſt æ-
<
lb
/>
qualis, hoc modo oſten demus.</
s
>
<
s
xml:id
="
echoid-s4385
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4386
"
xml:space
="
preserve
">Sit fruſtum pyramidis a b c d e f, cuius maior baſis trian-
<
lb
/>
gulum a b c; </
s
>
<
s
xml:id
="
echoid-s4387
"
xml:space
="
preserve
">minor d e f: </
s
>
<
s
xml:id
="
echoid-s4388
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4389
"
xml:space
="
preserve
">ſecetur plano baſibus æquidi-
<
lb
/>
ſtante, quod ſectionem faciat triangulum g h k inter trian-
<
lb
/>
gula a b c, d e f proportionale. </
s
>
<
s
xml:id
="
echoid-s4390
"
xml:space
="
preserve
">Iam ex iis, quæ demonſtrata
<
lb
/>
ſuntin 23. </
s
>
<
s
xml:id
="
echoid-s4391
"
xml:space
="
preserve
">huius, patet ſruſtum a b c d e f diuidi in tres pyra
<
lb
/>
mides proportionales; </
s
>
<
s
xml:id
="
echoid-s4392
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4393
"
xml:space
="
preserve
">earum maiorem eſſe pyramidẽ
<
lb
/>
a b c d minorẽ uero d e f b. </
s
>
<
s
xml:id
="
echoid-s4394
"
xml:space
="
preserve
">ergo pyramis à triangulo g h k
<
lb
/>
conſtituta, quæ altitudinem habeat ſruſti altitudini æqua-
<
lb
/>
lem, proportionalis eſtinter pyramides a b c d, d e f b: </
s
>
<
s
xml:id
="
echoid-s4395
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4396
"
xml:space
="
preserve
">
<
lb
/>
idcirco fruſtum a b c d e f tribus dictis pyramidibus æqua
<
lb
/>
le erit. </
s
>
<
s
xml:id
="
echoid-s4397
"
xml:space
="
preserve
">Itaque ſi intelligatur alia pyra-
<
lb
/>
<
figure
xlink:label
="
fig-0176-01
"
xlink:href
="
fig-0176-01a
"
number
="
131
">
<
image
file
="
0176-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0176-01
"/>
</
figure
>
mis æque alta, quæ baſim habeat ex tri
<
lb
/>
bus baſibus a b c, d e f, g h k conſtan-
<
lb
/>
tem; </
s
>
<
s
xml:id
="
echoid-s4398
"
xml:space
="
preserve
">perſpicuum eſtipſam eiſdem py-
<
lb
/>
ramidibus, & </
s
>
<
s
xml:id
="
echoid-s4399
"
xml:space
="
preserve
">propterea ipſi fruſto æ-
<
lb
/>
qualem eſſe.</
s
>
<
s
xml:id
="
echoid-s4400
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4401
"
xml:space
="
preserve
">Rurſus ſit ſruſtum pyramidis a g, cu
<
lb
/>
ius maior baſis quadrilaterum a b c d,
<
lb
/>
minor e f g h: </
s
>
<
s
xml:id
="
echoid-s4402
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4403
"
xml:space
="
preserve
">ſecetur plano baſi-
<
lb
/>
bus æquidiſtante, ita ut fiat ſectio qua-
<
lb
/>
drilaterum K lm n, quod ſit proportio
<
lb
/>
nale inter quadrilatera a b c d, e f g h. </
s
>
<
s
xml:id
="
echoid-s4404
"
xml:space
="
preserve
">Dico pyramidem,
<
lb
/>
cuius baſis ſit æqualis tribus quadrilateris a b c d, _k_ l m n,
<
lb
/>
e f g h, & </
s
>
<
s
xml:id
="
echoid-s4405
"
xml:space
="
preserve
">altitudo æqualis altitudini fruſti, ipſi fruſto a g
<
lb
/>
æqualem eſſe. </
s
>
<
s
xml:id
="
echoid-s4406
"
xml:space
="
preserve
">Ducatur enim planum per lineas f b, h </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>