Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of Notes
<
1 - 8
[out of range]
>
[Note]
Page: 39
[Note]
Page: 39
[Note]
Page: 39
[Note]
Page: 39
[Note]
Page: 40
[Note]
Page: 40
[Note]
Page: 40
[Note]
Page: 40
[Note]
Page: 40
[Note]
Page: 40
[Note]
Page: 40
[Note]
Page: 40
[Note]
Page: 41
[Note]
Page: 42
[Note]
Page: 42
[Note]
Page: 42
[Note]
Page: 43
[Note]
Page: 43
[Note]
Page: 43
[Note]
Page: 44
[Note]
Page: 44
[Note]
Page: 44
[Note]
Page: 45
[Note]
Page: 45
[Note]
Page: 45
[Note]
Page: 45
[Note]
Page: 46
[Note]
Page: 46
[Note]
Page: 47
[Note]
Page: 47
<
1 - 8
[out of range]
>
page
|<
<
(33)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div263
"
type
="
section
"
level
="
1
"
n
="
90
">
<
p
>
<
s
xml:id
="
echoid-s4406
"
xml:space
="
preserve
">
<
pb
o
="
33
"
file
="
0177
"
n
="
177
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
quod diuidat fruſtum in duo fruſta triangulares baſes ha-
<
lb
/>
bentia, uidelicet in fruſtum a b d e f h, & </
s
>
<
s
xml:id
="
echoid-s4407
"
xml:space
="
preserve
">in fruſtũ b c d f g h.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4408
"
xml:space
="
preserve
">erit triangulum k l n proportionale inter triangula a b d,
<
lb
/>
e f h: </
s
>
<
s
xml:id
="
echoid-s4409
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4410
"
xml:space
="
preserve
">triangulum l m n proportionale inter b c d, f g h. </
s
>
<
s
xml:id
="
echoid-s4411
"
xml:space
="
preserve
">
<
lb
/>
ſed pyramis æque alta, cuius baſis conſtat ex tribus trian-
<
lb
/>
gulis a b d, k l n, e f h, demonſtrata
<
lb
/>
<
figure
xlink:label
="
fig-0177-01
"
xlink:href
="
fig-0177-01a
"
number
="
132
">
<
image
file
="
0177-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0177-01
"/>
</
figure
>
eſt ſruſto a b d e f h æqualis. </
s
>
<
s
xml:id
="
echoid-s4412
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4413
"
xml:space
="
preserve
">ſi-
<
lb
/>
militer pyramis, cuius baſis con-
<
lb
/>
ſtat ex triangulis b c d, l m n, f g h
<
lb
/>
æqualis fruſto b c d f g h: </
s
>
<
s
xml:id
="
echoid-s4414
"
xml:space
="
preserve
">compo-
<
lb
/>
nuntur autem tria quadrilatera a
<
lb
/>
b c d, _k_ l m n, e f g h è ſex triangu-
<
lb
/>
lis iam dictis. </
s
>
<
s
xml:id
="
echoid-s4415
"
xml:space
="
preserve
">pyramis igitur ba-
<
lb
/>
ſim habens æqualem tribus qua-
<
lb
/>
drilateris, & </
s
>
<
s
xml:id
="
echoid-s4416
"
xml:space
="
preserve
">altitudinem eandem
<
lb
/>
ipſi fruſto a g eſt æqualis. </
s
>
<
s
xml:id
="
echoid-s4417
"
xml:space
="
preserve
">Eodem
<
lb
/>
modo illud demõſtrabitur in aliis
<
lb
/>
eiuſmodi fruſtis.</
s
>
<
s
xml:id
="
echoid-s4418
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4419
"
xml:space
="
preserve
">Sit fruſtum coni, uel coni, uel coni portionis a d; </
s
>
<
s
xml:id
="
echoid-s4420
"
xml:space
="
preserve
">cuius maior ba-
<
lb
/>
ſis circulus, uel ellipſis circa diametrum a b; </
s
>
<
s
xml:id
="
echoid-s4421
"
xml:space
="
preserve
">minor circa
<
lb
/>
c d: </
s
>
<
s
xml:id
="
echoid-s4422
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4423
"
xml:space
="
preserve
">ſecetur plano, quod baſibus æquidiſtet, faciatq; </
s
>
<
s
xml:id
="
echoid-s4424
"
xml:space
="
preserve
">ſe-
<
lb
/>
ctionem circulum, uel ellipſim circa diametrum e f, ita ut
<
lb
/>
inter circulos, uel ellipſes a b, c d ſit proportionalis. </
s
>
<
s
xml:id
="
echoid-s4425
"
xml:space
="
preserve
">Dico
<
lb
/>
conum, uel coni portionem, cuius baſis eſt æqualis tribus
<
lb
/>
circulis, uel tribus ellipſibus a b, e f, c d; </
s
>
<
s
xml:id
="
echoid-s4426
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4427
"
xml:space
="
preserve
">altitudo eadem,
<
lb
/>
quæ fruſti a d, ipſi fruſto æqualem eſſe. </
s
>
<
s
xml:id
="
echoid-s4428
"
xml:space
="
preserve
">producatur enim
<
lb
/>
fruſti ſuperficies quouſque coeat in unum punctum, quod
<
lb
/>
ſit g: </
s
>
<
s
xml:id
="
echoid-s4429
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4430
"
xml:space
="
preserve
">coni, uel coni portionis a g b axis ſit g h, occurrens
<
lb
/>
planis a b, e f, c d in punctis h _k_ l: </
s
>
<
s
xml:id
="
echoid-s4431
"
xml:space
="
preserve
">circa circulum uero de-
<
lb
/>
ſcribatur quadratum m n o p, & </
s
>
<
s
xml:id
="
echoid-s4432
"
xml:space
="
preserve
">circa ellipſim rectangulũ
<
lb
/>
m n o p, quod ex ipſius diametris conſtat: </
s
>
<
s
xml:id
="
echoid-s4433
"
xml:space
="
preserve
">iunctisq; </
s
>
<
s
xml:id
="
echoid-s4434
"
xml:space
="
preserve
">g m,
<
lb
/>
g n, g o, g p, ex eodem uertice intelligatur pyramis baſim
<
lb
/>
habens dictum quadratum, uel rectangulum: </
s
>
<
s
xml:id
="
echoid-s4435
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4436
"
xml:space
="
preserve
">plana in
<
lb
/>
quibus ſunt circuli, uel ellipſes e f, c d uſque ad eius </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>