Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of Notes
<
1 - 8
[out of range]
>
[Note]
Page: 48
[Note]
Page: 48
[Note]
Page: 49
[Note]
Page: 49
[Note]
Page: 49
[Note]
Page: 52
[Note]
Page: 52
[Note]
Page: 52
[Note]
Page: 52
[Note]
Page: 53
[Note]
Page: 53
[Note]
Page: 55
[Note]
Page: 56
[Note]
Page: 56
[Note]
Page: 57
[Note]
Page: 57
[Note]
Page: 57
[Note]
Page: 57
[Note]
Page: 58
[Note]
Page: 58
[Note]
Page: 58
[Note]
Page: 58
[Note]
Page: 58
[Note]
Page: 58
[Note]
Page: 58
[Note]
Page: 59
[Note]
Page: 60
[Note]
Page: 60
[Note]
Page: 60
[Note]
Page: 61
<
1 - 8
[out of range]
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div190
"
type
="
section
"
level
="
1
"
n
="
62
">
<
p
>
<
s
xml:id
="
echoid-s2820
"
xml:space
="
preserve
">
<
pb
file
="
0114
"
n
="
114
"
rhead
="
FED. COMMANDINI
"/>
tes æqueponderantes ipſam diuidet.</
s
>
<
s
xml:id
="
echoid-s2821
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2822
"
xml:space
="
preserve
">2 Priſmatis, cylindri, & </
s
>
<
s
xml:id
="
echoid-s2823
"
xml:space
="
preserve
">portionis cylindri axem
<
lb
/>
appello rectam lineam, quæ oppoſitorum plano-
<
lb
/>
rum centra grauitatis coniungit.</
s
>
<
s
xml:id
="
echoid-s2824
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2825
"
xml:space
="
preserve
">3 Pyramidis, coni, & </
s
>
<
s
xml:id
="
echoid-s2826
"
xml:space
="
preserve
">portionis coni axem dico li
<
lb
/>
neam, quæ à uertice ad centrum grauitatis baſis
<
lb
/>
perducitur.</
s
>
<
s
xml:id
="
echoid-s2827
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2828
"
xml:space
="
preserve
">4 Si pyramis, conus, portio coni, uel conoidis ſe-
<
lb
/>
cetur plano baſi æquidiſtante, pars, quæ eſt ad ba-
<
lb
/>
ſim, fruſtum pyramidis, coni, portionis coni, uel
<
lb
/>
conoidis dicetur; </
s
>
<
s
xml:id
="
echoid-s2829
"
xml:space
="
preserve
">quorum plana æquidiſtantia,
<
lb
/>
quæ opponuntur ſimilia ſunt, & </
s
>
<
s
xml:id
="
echoid-s2830
"
xml:space
="
preserve
">inæqualia: </
s
>
<
s
xml:id
="
echoid-s2831
"
xml:space
="
preserve
">axes
<
lb
/>
uero ſunt axium figurarum partes, quæ in ipſis
<
lb
/>
comprehenduntur.</
s
>
<
s
xml:id
="
echoid-s2832
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div191
"
type
="
section
"
level
="
1
"
n
="
63
">
<
head
xml:id
="
echoid-head70
"
xml:space
="
preserve
">PETITIONES.</
head
>
<
p
>
<
s
xml:id
="
echoid-s2833
"
xml:space
="
preserve
">1 Solidarum figurarum ſimilium centra grauita-
<
lb
/>
tis ſimiliter ſunt poſita.</
s
>
<
s
xml:id
="
echoid-s2834
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2835
"
xml:space
="
preserve
">2 Solidis figuris ſimilibus, & </
s
>
<
s
xml:id
="
echoid-s2836
"
xml:space
="
preserve
">æqualibus inter ſe
<
lb
/>
aptatis, centra quoque grauitatis ipſarum inter ſe
<
lb
/>
aptata erunt.</
s
>
<
s
xml:id
="
echoid-s2837
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div192
"
type
="
section
"
level
="
1
"
n
="
64
">
<
head
xml:id
="
echoid-head71
"
xml:space
="
preserve
">THEOREMA I. PROPOSITIO I.</
head
>
<
p
>
<
s
xml:id
="
echoid-s2838
"
xml:space
="
preserve
">Omnis figuræ rectilineæ in circulo deſcriptæ,
<
lb
/>
quæ æqualibus lateribus, & </
s
>
<
s
xml:id
="
echoid-s2839
"
xml:space
="
preserve
">angulis </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>