Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of Notes
<
1 - 8
[out of range]
>
[Note]
Page: 48
[Note]
Page: 48
[Note]
Page: 49
[Note]
Page: 49
[Note]
Page: 49
[Note]
Page: 52
[Note]
Page: 52
[Note]
Page: 52
[Note]
Page: 52
[Note]
Page: 53
[Note]
Page: 53
[Note]
Page: 55
[Note]
Page: 56
[Note]
Page: 56
[Note]
Page: 57
[Note]
Page: 57
[Note]
Page: 57
[Note]
Page: 57
[Note]
Page: 58
[Note]
Page: 58
[Note]
Page: 58
[Note]
Page: 58
[Note]
Page: 58
[Note]
Page: 58
[Note]
Page: 58
[Note]
Page: 59
[Note]
Page: 60
[Note]
Page: 60
[Note]
Page: 60
[Note]
Page: 61
<
1 - 8
[out of range]
>
page
|<
<
(16)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div224
"
type
="
section
"
level
="
1
"
n
="
74
">
<
pb
o
="
16
"
file
="
0144
"
n
="
144
"
rhead
="
FED. COMMANDINI
"/>
<
p
>
<
s
xml:id
="
echoid-s3635
"
xml:space
="
preserve
">SIT pyramis, cuius baſis triangulum a b c; </
s
>
<
s
xml:id
="
echoid-s3636
"
xml:space
="
preserve
">axis d e: </
s
>
<
s
xml:id
="
echoid-s3637
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3638
"
xml:space
="
preserve
">
<
lb
/>
ſecetur plano baſi æquidiſtante; </
s
>
<
s
xml:id
="
echoid-s3639
"
xml:space
="
preserve
">quod ſectionẽ faciat f g h;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3640
"
xml:space
="
preserve
">occurratq; </
s
>
<
s
xml:id
="
echoid-s3641
"
xml:space
="
preserve
">axi in puncto k. </
s
>
<
s
xml:id
="
echoid-s3642
"
xml:space
="
preserve
">Dico f g h triangulum eſſe, ipſi
<
lb
/>
a b c ſimile; </
s
>
<
s
xml:id
="
echoid-s3643
"
xml:space
="
preserve
">cuius grauitatis centrum eſt K. </
s
>
<
s
xml:id
="
echoid-s3644
"
xml:space
="
preserve
">Quoniã enim
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0144-01
"
xlink:href
="
note-0144-01a
"
xml:space
="
preserve
">16. unde
<
lb
/>
cimi</
note
>
duo plana æquidiſtantia a b c, f g h ſecantur à plano a b d;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3645
"
xml:space
="
preserve
">communes eorum ſectiones a b, f g æquidiſtantes erunt: </
s
>
<
s
xml:id
="
echoid-s3646
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3647
"
xml:space
="
preserve
">
<
lb
/>
eadem ratione æquidiſtantes ipſæ b c, g h: </
s
>
<
s
xml:id
="
echoid-s3648
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3649
"
xml:space
="
preserve
">c a, h f. </
s
>
<
s
xml:id
="
echoid-s3650
"
xml:space
="
preserve
">Quòd
<
lb
/>
cum duæ lineæ f g, g h, duabus a b, b c æquidiſtent, nec
<
lb
/>
ſintin eodem plano; </
s
>
<
s
xml:id
="
echoid-s3651
"
xml:space
="
preserve
">angulus ad g æqualis eſt angulo ad
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0144-02
"
xlink:href
="
note-0144-02a
"
xml:space
="
preserve
">10. undeci
<
lb
/>
mi.</
note
>
b: </
s
>
<
s
xml:id
="
echoid-s3652
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3653
"
xml:space
="
preserve
">ſimiliter angulus ad h angulo ad c: </
s
>
<
s
xml:id
="
echoid-s3654
"
xml:space
="
preserve
">angulusq; </
s
>
<
s
xml:id
="
echoid-s3655
"
xml:space
="
preserve
">ad f ei,
<
lb
/>
qui ad a eſt æqualis. </
s
>
<
s
xml:id
="
echoid-s3656
"
xml:space
="
preserve
">triangulum igitur f g h ſimile eſt tri-
<
lb
/>
angulo a b c. </
s
>
<
s
xml:id
="
echoid-s3657
"
xml:space
="
preserve
">At uero punctum k centrum eſſe grauita-
<
lb
/>
tis trianguli f g h hoc modo oſtendemus. </
s
>
<
s
xml:id
="
echoid-s3658
"
xml:space
="
preserve
">Ducantur pla-
<
lb
/>
na per axem, & </
s
>
<
s
xml:id
="
echoid-s3659
"
xml:space
="
preserve
">per lineas d a, d b, d c: </
s
>
<
s
xml:id
="
echoid-s3660
"
xml:space
="
preserve
">erunt communes ſe-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0144-03
"
xlink:href
="
note-0144-03a
"
xml:space
="
preserve
">16. unde-
<
lb
/>
cimi</
note
>
ctiones f K, a e æquidiſtantes: </
s
>
<
s
xml:id
="
echoid-s3661
"
xml:space
="
preserve
">pariterq; </
s
>
<
s
xml:id
="
echoid-s3662
"
xml:space
="
preserve
">k g, e b; </
s
>
<
s
xml:id
="
echoid-s3663
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3664
"
xml:space
="
preserve
">k h, e c:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3665
"
xml:space
="
preserve
">quare angulus k f h angulo e a c; </
s
>
<
s
xml:id
="
echoid-s3666
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3667
"
xml:space
="
preserve
">angulus k f g ipſi e a b
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0144-04
"
xlink:href
="
note-0144-04a
"
xml:space
="
preserve
">10. unde-
<
lb
/>
cimi</
note
>
eſt æqualis. </
s
>
<
s
xml:id
="
echoid-s3668
"
xml:space
="
preserve
">Eadem ratione
<
lb
/>
<
figure
xlink:label
="
fig-0144-01
"
xlink:href
="
fig-0144-01a
"
number
="
98
">
<
image
file
="
0144-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0144-01
"/>
</
figure
>
anguli ad g angulis ad b: </
s
>
<
s
xml:id
="
echoid-s3669
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3670
"
xml:space
="
preserve
">
<
lb
/>
anguli ad h iis, qui ad c æ-
<
lb
/>
quales erunt. </
s
>
<
s
xml:id
="
echoid-s3671
"
xml:space
="
preserve
">ergo puncta
<
lb
/>
e _K_ in triangulis a b c, f g h
<
lb
/>
ſimiliter ſunt poſita, per ſe-
<
lb
/>
xtam poſitionem Archime-
<
lb
/>
dis in libro de centro graui-
<
lb
/>
tatis planorum. </
s
>
<
s
xml:id
="
echoid-s3672
"
xml:space
="
preserve
">Sed cum e
<
lb
/>
ſit centrum grauitatis trian
<
lb
/>
guli a b c, erit ex undecíma
<
lb
/>
propoſitione eiuſdem libri,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s3673
"
xml:space
="
preserve
">K trianguli f g h grauita
<
lb
/>
tis centrum. </
s
>
<
s
xml:id
="
echoid-s3674
"
xml:space
="
preserve
">id quod demonſtrare oportebat. </
s
>
<
s
xml:id
="
echoid-s3675
"
xml:space
="
preserve
">Non aliter
<
lb
/>
in ceteris pyramidibus, quod propoſitum eſt demonſtra-
<
lb
/>
bitur.</
s
>
<
s
xml:id
="
echoid-s3676
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>