Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of Notes
<
1 - 8
[out of range]
>
[Note]
Page: 48
[Note]
Page: 48
[Note]
Page: 49
[Note]
Page: 49
[Note]
Page: 49
[Note]
Page: 52
[Note]
Page: 52
[Note]
Page: 52
[Note]
Page: 52
[Note]
Page: 53
[Note]
Page: 53
[Note]
Page: 55
[Note]
Page: 56
[Note]
Page: 56
[Note]
Page: 57
[Note]
Page: 57
[Note]
Page: 57
[Note]
Page: 57
[Note]
Page: 58
[Note]
Page: 58
[Note]
Page: 58
[Note]
Page: 58
[Note]
Page: 58
[Note]
Page: 58
[Note]
Page: 58
[Note]
Page: 59
[Note]
Page: 60
[Note]
Page: 60
[Note]
Page: 60
[Note]
Page: 61
<
1 - 8
[out of range]
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div252
"
type
="
section
"
level
="
1
"
n
="
86
">
<
p
>
<
s
xml:id
="
echoid-s4120
"
xml:space
="
preserve
">
<
pb
file
="
0166
"
n
="
166
"
rhead
="
FED. COMMANDINI
"/>
compoſitam proportionem habet ex proportione baſiũ,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s4121
"
xml:space
="
preserve
">proportione altitudinum. </
s
>
<
s
xml:id
="
echoid-s4122
"
xml:space
="
preserve
">Quare & </
s
>
<
s
xml:id
="
echoid-s4123
"
xml:space
="
preserve
">pyramis, cuius ba-
<
lb
/>
ſis eſt quadrilaterum a b c d, & </
s
>
<
s
xml:id
="
echoid-s4124
"
xml:space
="
preserve
">altitudo e f ad pyramidem,
<
lb
/>
<
figure
xlink:label
="
fig-0166-01
"
xlink:href
="
fig-0166-01a
"
number
="
122
">
<
image
file
="
0166-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0166-01
"/>
</
figure
>
cuius baſis quadrilaterum g h K l, & </
s
>
<
s
xml:id
="
echoid-s4125
"
xml:space
="
preserve
">altitudo m n, compoſi
<
lb
/>
tam habet proportionem ex proportione baſium a b c d,
<
lb
/>
g h k l, & </
s
>
<
s
xml:id
="
echoid-s4126
"
xml:space
="
preserve
">ex proportione altitudinum e f, m n. </
s
>
<
s
xml:id
="
echoid-s4127
"
xml:space
="
preserve
">quod qui-
<
lb
/>
dem demonſtraſſe oportebat.</
s
>
<
s
xml:id
="
echoid-s4128
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4129
"
xml:space
="
preserve
">Ex iam demonſtratis perſpicuum eſt, priſma
<
lb
/>
ta omnia, & </
s
>
<
s
xml:id
="
echoid-s4130
"
xml:space
="
preserve
">pyramides, in quibus axes cum baſi-
<
lb
/>
bus æquales angulos continent, proportionem
<
lb
/>
habere compoſitam ex baſium proportione, & </
s
>
<
s
xml:id
="
echoid-s4131
"
xml:space
="
preserve
">
<
lb
/>
proportione axium. </
s
>
<
s
xml:id
="
echoid-s4132
"
xml:space
="
preserve
">demonſttatum eſt enim, a-
<
lb
/>
xes inter ſe eandem proportionem habere, quam
<
lb
/>
ipſæ altitudines.</
s
>
<
s
xml:id
="
echoid-s4133
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div254
"
type
="
section
"
level
="
1
"
n
="
87
">
<
head
xml:id
="
echoid-head94
"
xml:space
="
preserve
">THE OREMA XVIII. PROPOSITIO XXII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s4134
"
xml:space
="
preserve
">
<
emph
style
="
sc
">Cvivslibet</
emph
>
pyramidis, & </
s
>
<
s
xml:id
="
echoid-s4135
"
xml:space
="
preserve
">cuiuslibet </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>