Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

< >
[21.] ARCHIMEDIS DE IIS QVAE VEHVNTVR IN AQVA LIBER SECVNDVS. CVM COMMENTARIIS FEDERICI COMMANDINI VRBINATIS. PROPOSITIO I.
[22.] PROPOSITIO II.
[23.] COMMENTARIVS.
[24.] PROPOSITIO III.
[25.] PROPOSITIO IIII.
[26.] COMMENTARIVS.
[27.] PROPOSITIO V.
[28.] COMMENTARIVS.
[29.] PROPOSITIO VI.
[30.] COMMENTARIVS.
[31.] LEMMAI.
[32.] LEMMA II.
[33.] LEMMA III.
[34.] LEMMA IIII.
[35.] PROPOSITIO VII.
[36.] PROPOSITIO VIII.
[37.] COMMENTARIVS.
[38.] PROPOSITIO IX.
[39.] COMMENTARIVS.
[40.] PROPOSITIO X.
[41.] COMMENTARIVS.
[42.] LEMMA I.
[43.] LEMMA II.
[44.] LEMMA III.
[45.] LEMMA IIII.
[46.] LEMMA V.
[47.] LEMMA VI.
[48.] II.
[49.] III.
[50.] IIII.
< >
page |< < of 213 > >|
34ARCHIMEDIS
_Erit r o minor, quàm, quæ uſque ad axem]_ Ex decima
11E propoſitione quinti libri elementorum.
apud Archimedem, eſt dimidia eius, iuxta quam poſſunt, quæ à ſe-
ctione ducuntur;
ut ex quarta propoſitione libri de conoidibus, &
ſphæroidibus apparet.
cur uero ita appellata ſit, nos in commentarĳs
_Quare angulus r p ω acutus erit]_ producatur linea n o ad
22F h, ut ſit r h æqualis ei, quæ uſque ad axem.
ſi igitur à puncto h du-
catur linea ad rectos angulos ipſi n h, conueniet cum f p extra ſe-
ctionem:
ducta enim per o ipſi a l æquidiſtans, extra ſectionem ca
dit ex decima ſepti-
ma primi libri coni-
corum.
Itaque con-
ueniat in u.
& quo
niam f p est æqui-
distans diametro;
trum perpendicula-
ris;
& r h æqualis
ei, quæ uſq;
u ducta angulos re-
ctos faciet cum ea, quæ ſectionem in puncto p contingit, hoc eſt cum
k ω, ut mox demonstrabitur.
quare perpendicularis r t inter p &