Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[51.] V.
[52.] DEMONSTRATIO SECVNDAE PARTIS.
[53.] COMMENTARIVS.
[54.] DEMONSTRATIO TERTIAE PARTIS.
[55.] COMMENTARIVS.
[56.] DEMONSTRATIO QVARTAE PARTIS.
[57.] DEMONSTRATIO QVINT AE PARTIS.
[58.] FINIS LIBRORVM ARCHIMEDIS DE IIS, QVAE IN AQVA VEHVNTVR.
[59.] FEDERICI COMMANDINI VRBINATIS LIBER DE CENTRO GRAVITATIS SOLIDORV M.
[60.] CVM PRIVILEGIO IN ANNOS X. BONONIAE, Ex Officina Alexandri Benacii. M D LXV.
[61.] ALEXANDRO FARNESIO CARDINALI AMPLISSIMO ET OPTIMO.
[62.] FEDERICI COMMANDINI VRBINATIS LIBER DE CENTRO GRAVITATIS SOLIDORVM. DIFFINITIONES.
[63.] PETITIONES.
[64.] THEOREMA I. PROPOSITIO I.
[65.] THEOREMA II. PROPOSITIO II.
[66.] THE OREMA III. PROPOSITIO III.
[67.] THE OREMA IIII. PROPOSITIO IIII.
[68.] ALITER.
[69.] THEOREMA V. PROPOSITIO V.
[70.] COROLLARIVM.
[71.] THEOREMA VI. PROPOSITIO VI.
[72.] THE OREMA VII. PROPOSITIO VII.
[73.] THE OREMA VIII. PROPOSITIO VIII.
[74.] THE OREMA IX. PROPOSITIO IX.
[75.] PROBLEMA I. PROPOSITIO X.
[76.] PROBLEMA II. PROPOSITIO XI.
[77.] PROBLEMA III. PROPOSITIO XII.
[78.] PROBLEMA IIII. PROPOSITIO XIII.
[79.] THEOREMA X. PROPOSITIO XIIII.
[80.] THE OREMA XI. PROPOSITIO XV.
< >
page |< < (7) of 213 > >|
1257DE CENTRO GRAVIT. SOLID. metrum habens e d. Quoniam igitur circuli uel ellipſis
a e c b grauitatis centrum eſt in diametro b e, &
portio-
nis a e c centrum in linea e d:
reliquæ portionis, uidelicet
a b c centrum grauitatis in ipſa b d conſiſtat neceſſe eſt, ex
octaua propoſitione eiuſdem.
THEOREMA V. PROPOSITIO V.
SI priſma ſecetur plano oppoſitis planis æqui
diſtante, ſectio erit figura æqualis &
ſimilis ei,
quæ eſt oppoſitorum planorum, centrum graui
tatis in axe habens.
Sit priſma, in quo plana oppoſita ſint triangula a b c,
d e f;
axis g h: & ſecetur plano iam dictis planis æquidiſtã
te;
quod faciat ſectionem K l m; & axi in pũcto n occurrat.
Dico _k_ l m triangulum æquale eſſe, & ſimile triangulis a b c
d e f;
atque eius grauitatis centrum eſſe punctum n. Quo-
niam enim plana a b c
82[Figure 82] K l m æquidiſtantia ſecã
1116. unde-
cimi.
tur a plano a e;
rectæ li-
neæ a b, K l, quæ ſunt ip
ſorum cõmunes ſectio-
nes inter ſe ſe æquidi-
ſtant.
Sed æquidiſtant
a d, b e;
cum a e ſit para
lelogrammum, ex priſ-
matis diffinitione.
ergo
&
al parallelogrammũ
erit;
& propterea linea
2234. prim@ _k_l, ipſi a b æqualis.
Si-
militer demonſtrabitur
l m æquidiſtans, &
æqua
lis b c;
& m K ipſi c a.

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index