Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[51.] V.
[52.] DEMONSTRATIO SECVNDAE PARTIS.
[53.] COMMENTARIVS.
[54.] DEMONSTRATIO TERTIAE PARTIS.
[55.] COMMENTARIVS.
[56.] DEMONSTRATIO QVARTAE PARTIS.
[57.] DEMONSTRATIO QVINT AE PARTIS.
[58.] FINIS LIBRORVM ARCHIMEDIS DE IIS, QVAE IN AQVA VEHVNTVR.
[59.] FEDERICI COMMANDINI VRBINATIS LIBER DE CENTRO GRAVITATIS SOLIDORV M.
[60.] CVM PRIVILEGIO IN ANNOS X. BONONIAE, Ex Officina Alexandri Benacii. M D LXV.
[61.] ALEXANDRO FARNESIO CARDINALI AMPLISSIMO ET OPTIMO.
[62.] FEDERICI COMMANDINI VRBINATIS LIBER DE CENTRO GRAVITATIS SOLIDORVM. DIFFINITIONES.
[63.] PETITIONES.
[64.] THEOREMA I. PROPOSITIO I.
[65.] THEOREMA II. PROPOSITIO II.
[66.] THE OREMA III. PROPOSITIO III.
[67.] THE OREMA IIII. PROPOSITIO IIII.
[68.] ALITER.
[69.] THEOREMA V. PROPOSITIO V.
[70.] COROLLARIVM.
[71.] THEOREMA VI. PROPOSITIO VI.
[72.] THE OREMA VII. PROPOSITIO VII.
[73.] THE OREMA VIII. PROPOSITIO VIII.
[74.] THE OREMA IX. PROPOSITIO IX.
[75.] PROBLEMA I. PROPOSITIO X.
[76.] PROBLEMA II. PROPOSITIO XI.
[77.] PROBLEMA III. PROPOSITIO XII.
[78.] PROBLEMA IIII. PROPOSITIO XIII.
[79.] THEOREMA X. PROPOSITIO XIIII.
[80.] THE OREMA XI. PROPOSITIO XV.
< >
page |< < of 213 > >|
190FED. COMMANDINI ctiones circuli ex prima propofitione ſphæricorum Theo
doſii:
unus quidem circa triangulum a b c deſcriptus: al-
ter uero circa d e f:
& quoniam triangula a b c, d e f æqua-
lia ſunt, &
ſimilia; erunt ex prima, & ſecunda propoſitione
duodecimi libri elementorum, circuli quoque inter ſe ſe
æquales.
poſtremo a centro g ad circulum a b c perpendi
cularis ducatur g h;
& alia perpendicularis ducatur ad cir
culum d e f, quæ ſit g _k_;
& iungantur a h, d k. perſpicuum
eſt ex corollario primæ ſphæricorum Theodoſii, punctum
h centrum eſſe circuli a b c, &
k centrum circuli d e f. Quo
niam igitur triangulorum g a h, g d K latus a g eſt æquale la
teri g d;
ſunt enim à centro ſphæræ ad ſuperficiem: atque
eſt a h æquale d k:
& ex ſexta propoſitione libri primi ſphæ
ricorum Theodoſii g h ipſi g K:
triangulum g a h æquale
erit, &
ſimile g d k triangulo: & angulus a g h æqualis an-
gulo d g _K_.
ſed anguli a g h, h g d ſunt æquales duobus re-
1113. primi ctis.
ergo & ipſi h g d, d g k duobus rectis æquales erunt.
& idcirco h g, g _K_ una, atque eadem erit linea. cum autem
2214. primi h ſit centrũ circuli, &
tri-
141[Figure 141] anguli a b c grauitatis cen
trũ probabitur ex iis, quæ
in prima propoſitione hu
ius tradita funt.
quare g h
erit pyramidis a b c g axis.
& ob eandem cauſſam g k
axis pyramidis d e f g.
Ita-
que centrum grauitatis py
ramidis a b c g ſit púctum
l, &
pyramidis d e f g ſit m.
Similiter ut ſupra demon-
ſtrabimus m g, g linter ſe æquales eſſe, &
punctum g graui
tatis centrum magnitudinis, quæ ex utriſque pyramidibus
conſtat.
eodem modo demonſtrabitur, quarumcunque
duarum pyramidum, quæ opponuntur, grauitatis

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index