Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[71. THEOREMA VI. PROPOSITIO VI.]
[72. THE OREMA VII. PROPOSITIO VII.]
[73. THE OREMA VIII. PROPOSITIO VIII.]
[74. THE OREMA IX. PROPOSITIO IX.]
[75. PROBLEMA I. PROPOSITIO X.]
[76. PROBLEMA II. PROPOSITIO XI.]
[77. PROBLEMA III. PROPOSITIO XII.]
[78. PROBLEMA IIII. PROPOSITIO XIII.]
[79. THEOREMA X. PROPOSITIO XIIII.]
[80. THE OREMA XI. PROPOSITIO XV.]
[81. THE OREMA XII. PROPOSITIO XVI.]
[82. THE OREMA XIII. PROPOSITIO XVII.]
[83. THEOREMA XIIII. PROPOSITIO XVIII.]
[84. THEOREMA XV. PROPOSITIO XIX.]
[85. THE OREMA XVI. PROPOSITIO XX.]
[86. THEOREMA XVII. PROPOSITIO XXI.]
[87. THE OREMA XVIII. PROPOSITIO XXII.]
[88. THEOREMA XIX. PROPOSITIO XXIII.]
[89. PROBLEMA V. PROPOSITIO XXIIII.]
[90. THEOREMA XX. PROPOSITIO XXV.]
[91. THEOREMA XXI. PROPOSITIO XXVI.]
[92. THEOREMA XXII. PROPOSITIO XXVII.]
[93. PROBLEMA VI. PROPOSITIO XX VIII.]
[94. THE OREMA XXIII. PROPOSITIO XXIX.]
[95. THEOREMA XXIIII. PROPOSITIO XXX.]
[96. THEOREMA XXV. PROPOSITIO XXXI.]
[97. FINIS LIBRI DE CENTRO GRAVITATIS SOLIDORVM.]
< >
page |< < of 213 > >|
FED. COMMANDINI
habeat circulus, uel ellipſis g h ad aliud ſpacium, in quo u:
& in circulo, uel ellipſi plane deſcribatur rectilinea figura,
ita ut tãdem relinquãtur portiones minores ſpacio u, quæ
ſit o p g q r s h t:
deſcriptaq; ſimili figura in oppoſitis pla-
nis c d, f e, per lineas ſibi ipſis reſpondentes plana ducãtur.

Itaque cylindrus, uel cylindri portio diuiditur in priſma,
cuius quidem baſis eſt figura rectilinea iam dicta, centrum
que grauitatis punctum K:
& in multa ſolida, quæ pro baſi
bus habent relictas portiones, quas nos ſolidas portiones
appellabimus.
cum igitur portiones ſint minores ſpacio
u, circulus, uel ellipſis g h ad portiones maiorem propor-
tionem habebit, quàm linea m k ad K l.
fiat n k ad K l, ut
circulus uel ellipſis g h ad ipſas portiones.
Sed ut circulus
uel ellipſis g h ad figuram rectilineam in ipſa deſcri-
ptam, ita eſt cylindrus uel cylindri portio c e ad priſma,
quod rectilineam figuram pro baſi habet, &
altitudinem
æqualem;
id, quod infra demonſtrabitur, ergo per conuer
ſionem rationis, ut circulus, uel ellipſis g h ad portiones re
lictas, ita cylindrus, uel cylindri portio c e ad ſolidas por-
tiones, quare cylindrus uel cylindri portio ad ſolidas por-
tiones eandem proportionem habet, quam linea n k a d _k_
&
diuidendo priſma, cuius baſis eſt rectilinea figura ad ſo-
lidas portiones eandem proportionem habet, quam n lad
1 _k_.
& quoniam a cylindro uel cylindri portione, cuius gra-
uitatis centrum eſt l, aufertur priſma baſim habens rectili-
neam figurã, cuius centrũ grauitatis eſt _K_:
reſiduæ magnitu
dinis ex ſolidis portionibus cõpoſitæ grauitatis cẽtrũ erit
in linea k l protracta, &
in puncto n; quod eſt abſurdū. relin
quitur ergo, ut cẽtrum grauitatis cylindri;
uel cylin dri por
tionis ſit punctũ k.
quæ omnia demonſtrãda propoſuimus.
At uero cylindrum, uel cylindri portionẽ ce
ad priſma, cuius baſis eſt rectilinea figura in ſpa-
cio g h deſcripta, &
altitudo æqualis; eandem ha-

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index