Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

< >
[81.] THE OREMA XII. PROPOSITIO XVI.
[82.] THE OREMA XIII. PROPOSITIO XVII.
[83.] THEOREMA XIIII. PROPOSITIO XVIII.
[84.] THEOREMA XV. PROPOSITIO XIX.
[85.] THE OREMA XVI. PROPOSITIO XX.
[86.] THEOREMA XVII. PROPOSITIO XXI.
[87.] THE OREMA XVIII. PROPOSITIO XXII.
[88.] THEOREMA XIX. PROPOSITIO XXIII.
[89.] PROBLEMA V. PROPOSITIO XXIIII.
[90.] THEOREMA XX. PROPOSITIO XXV.
[91.] THEOREMA XXI. PROPOSITIO XXVI.
[92.] THEOREMA XXII. PROPOSITIO XXVII.
[93.] PROBLEMA VI. PROPOSITIO XX VIII.
[94.] THE OREMA XXIII. PROPOSITIO XXIX.
[95.] THEOREMA XXIIII. PROPOSITIO XXX.
[96.] THEOREMA XXV. PROPOSITIO XXXI.
[97.] FINIS LIBRI DE CENTRO GRAVITATIS SOLIDORVM.
< >
page |< < (30) of 213 > >|
17130DE CENTRO GRAVIT. SOLID. pra demonſtratum eſt, ita eſſe cylindrum, uel cylindri por-
118. huius tionem ad priſina, cuius baſis rectilinea figura, &
æqua-
lis altitudo.
ergo per conuerſionem rationis, ut circulus,
tiones ſolidas.
quare conus uel coni portio ad portiones
ſolidas maiorem habet proportionem, quam g e ad e f:
&
diuidendo, pyramis ad portiones ſolidas maiorem pro-
portionem habet, quam g f ad f e.
ſiat igitur q f ad f e
Itaque quoniam à cono
uel coni portione, cuius grauitatis centrum eſt f, aufer-
tur pyramis, cuius centrum e;
reliquæ magnitudinis,
quæ ex ſolidis portionibus conſtat, centrum grauitatis
erit in linea e f protracta, &
in puncto q. quod fieri
non poteft:
eſt enim centrum grauitatis intra. Conſtat
igitur coni, uel coni portionis grauitatis centrum eſſe pun
ctum e.
quæ omnia demonſtrare oportebat.
THEOREMA XIX. PROPOSITIO XXIII.
Qvodlibet fruſtum à pyramide, quæ
triangularem baſim habeat, abſciſſum, diuiditur
in tres pyramides proportionales, in ea proportio
ne, quæ eſt lateris maioris baſis ad latus minoris
ipſi reſpondens.
Hoc demonſtrauit Leonardus Piſanus in libro, qui de-
praxi geometriæ inſcribitur.