Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

< >
[91.] THEOREMA XXI. PROPOSITIO XXVI.
[92.] THEOREMA XXII. PROPOSITIO XXVII.
[93.] PROBLEMA VI. PROPOSITIO XX VIII.
[94.] THE OREMA XXIII. PROPOSITIO XXIX.
[95.] THEOREMA XXIIII. PROPOSITIO XXX.
[96.] THEOREMA XXV. PROPOSITIO XXXI.
[97.] FINIS LIBRI DE CENTRO GRAVITATIS SOLIDORVM.
< >
page |< < (15) of 213 > >|
14115DE CENTRO GRAVIT. SOLID. bere proportionem, quam ſpacium g h ad dictã
figuram, hoc modo demonſtrabimus.
Intelligatur circulus, uel ellipſis x æqualis figuræ rectili-
neæ in g h ſpacio deſcriptæ:
& ab x conſtituatur conus, uel
coni portio, altitudinẽ habens eandẽ, quã cylindrus uel cy
lindri portio c e.
Sit deinde rectilinea figura, in quay eade,
quæ in ſpacio g h deſcripta eſt:
& ab hac pyramis æquealta
conſtituatur.
Dico conũ uel coni portionẽ x pyramidiy æ-
qualẽ eſſe.
niſi enim ſit æqualis, uel maior, uel minor erit.
Sit primum maior, et exuperet ſolido z. Itaque in circu
lo, uel ellipſi x deſcribatur figura rectilinea;
& in ea pyra-
mis eandem, quam conus, uel coni portio altitudinem ha-
bens, ita ut portiones relictæ minores ſint ſolido z, quem-
admodum docetur in duodecimo libro elementorum pro
poſitione undecima.
erit pyramis x adhuc pyramide y ma
ior.
& quoniam piramides æque altæ inter ſe ſunt, ſicuti ba
116. duode-
cimi.
ſes;
pyramis x ad piramidem y eandem proportionem ha-
bet, quàm figura rectilinea x ad figuram y.
Sed ſigura