Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[11. PROPOSITIO IIII.]
[12. PROPOSITIO V.]
[13. PROPOSITIO VI.]
[14. PROPOSITIO VII.]
[15. POSITIO II.]
[16. COMMENTARIVS.]
[17. PROPOSITIO VIII.]
[18. COMMENTARIVS.]
[19. PROPOSITIO IX.]
[20. COMMENTARIVS.]
[21. ARCHIMEDIS DE IIS QVAE VEHVNTVR IN AQVA LIBER SECVNDVS. CVM COMMENTARIIS FEDERICI COMMANDINI VRBINATIS. PROPOSITIO I.]
[22. PROPOSITIO II.]
[23. COMMENTARIVS.]
[24. PROPOSITIO III.]
[25. PROPOSITIO IIII.]
[26. COMMENTARIVS.]
[27. PROPOSITIO V.]
[28. COMMENTARIVS.]
[29. PROPOSITIO VI.]
[30. COMMENTARIVS.]
[31. LEMMAI.]
[32. LEMMA II.]
[33. LEMMA III.]
[34. LEMMA IIII.]
[35. PROPOSITIO VII.]
[36. PROPOSITIO VIII.]
[37. COMMENTARIVS.]
[38. PROPOSITIO IX.]
[39. COMMENTARIVS.]
[40. PROPOSITIO X.]
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="71">
          <p>
            <s xml:space="preserve">
              <pb file="0128" n="128" rhead="FED. COMMANDINI"/>
            ergo linea a g continenter in duas partes æquales diui-
              <lb/>
              <anchor type="note" xlink:label="note-0128-01a" xlink:href="note-0128-01"/>
            ſa, relinquetur tãdem pars aliqua n g, quæ minor eritl m.
              <lb/>
            </s>
            <s xml:space="preserve">Vtraque uero linearum a g, g b diuidatur in partes æqua-
              <lb/>
            les ipſi n g: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per puncta diuiſionum plana oppoſitis pla-
              <lb/>
              <anchor type="note" xlink:label="note-0128-02a" xlink:href="note-0128-02"/>
            nis æquidiſtantia ducantur. </s>
            <s xml:space="preserve">erunt ſectiones figuræ æqua-
              <lb/>
            les, ac ſimiles ipſis a c e, b d f: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">totum priſma diuiſum erit
              <lb/>
            in priſmata æqualia, & </s>
            <s xml:space="preserve">ſimilia: </s>
            <s xml:space="preserve">quæ cum inter ſe congruãt;
              <lb/>
            </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">grauitatis centra ſibi ipſis congruentia, reſpondentiaq; </s>
            <s xml:space="preserve">
              <lb/>
            habebunt. </s>
            <s xml:space="preserve">Itaq: </s>
            <s xml:space="preserve">
              <lb/>
              <anchor type="figure" xlink:label="fig-0128-01a" xlink:href="fig-0128-01"/>
            ſunt magnitudi-
              <lb/>
            nes quædã æqua-
              <lb/>
            les ipſi n h, & </s>
            <s xml:space="preserve">nu-
              <lb/>
            mero pares, qua-
              <lb/>
            rum centra gra-
              <lb/>
            uitatis in eadẽ re
              <lb/>
            cta linea conſti-
              <lb/>
            tuuntur: </s>
            <s xml:space="preserve">duæ ue-
              <lb/>
            ro mediæ æqua-
              <lb/>
            les ſunt: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">quæ ex
              <lb/>
            utraque parte i-
              <lb/>
            pſarum ſimili --
              <lb/>
            ter æquales: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">æ-
              <lb/>
            quales rectæ li-
              <lb/>
            neæ, quæ inter
              <lb/>
            grauitatis centra
              <lb/>
            interiiciuntur.
              <lb/>
            </s>
            <s xml:space="preserve">quare ex corolla-
              <lb/>
            rio quintæ pro-
              <lb/>
            poſitionis primi
              <lb/>
            libri Archimedis
              <lb/>
            de centro graui-
              <lb/>
            tatis planorum; </s>
            <s xml:space="preserve">magnitudinis ex his omnibus compoſitæ
              <lb/>
            centrum grauitatis eſt in medio lineæ, quæ magnitudi-
              <lb/>
            num mediarum centra coniungit. </s>
            <s xml:space="preserve">at qui non ita res ha-</s>
          </p>
        </div>
      </text>
    </echo>