Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
< >
page |< < (47) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div286" type="section" level="1" n="96">
          <p>
            <s xml:id="echoid-s5121" xml:space="preserve">
              <pb o="47" file="0205" n="205" rhead="DE CENTRO GRAVIT. SOLID."/>
            eani proportionem habeat, quam a b c d fruſtum ad por-
              <lb/>
            tionem a g d; </s>
            <s xml:id="echoid-s5122" xml:space="preserve">erit punctum l eius fruſti grauitatis cẽtrum:
              <lb/>
            </s>
            <s xml:id="echoid-s5123" xml:space="preserve">habebitq; </s>
            <s xml:id="echoid-s5124" xml:space="preserve">componendo K l ad 1 h proportionem eandem,
              <lb/>
            quam portio conoidis b gc ad a g d portionem. </s>
            <s xml:id="echoid-s5125" xml:space="preserve">Itaq; </s>
            <s xml:id="echoid-s5126" xml:space="preserve">quo
              <lb/>
              <note position="right" xlink:label="note-0205-01" xlink:href="note-0205-01a" xml:space="preserve">20. I. coni
                <lb/>
              corum.</note>
            niam quadratum b f ad quadratum a e, hoc eſt quadratum
              <lb/>
            b c ad quadratum a d eſt, ut linea f g ad g e: </s>
            <s xml:id="echoid-s5127" xml:space="preserve">erunt duæ ter-
              <lb/>
            tiæ quadrati b c ad duas tertias quadrati a d, ut h g ad g _k_:
              <lb/>
            </s>
            <s xml:id="echoid-s5128" xml:space="preserve">& </s>
            <s xml:id="echoid-s5129" xml:space="preserve">ſi à duabus tertiis quadrati b c demptæ fuerint duæ ter-
              <lb/>
            tiæ quadrati a d: </s>
            <s xml:id="echoid-s5130" xml:space="preserve">erit diuidẽdo id, quod relinquitur ad duas
              <lb/>
            tertias quadrati a d, ut h k ad k g. </s>
            <s xml:id="echoid-s5131" xml:space="preserve">Rurſus duæ tertiæ quadra
              <lb/>
            ti a d ad duas tertias quadrati b c ſunt, ut _k_ g ad g h: </s>
            <s xml:id="echoid-s5132" xml:space="preserve">& </s>
            <s xml:id="echoid-s5133" xml:space="preserve">duæ
              <lb/>
            tertiæ quadrati b c ad tertiã partẽ ipſius, ut g h ad h f. </s>
            <s xml:id="echoid-s5134" xml:space="preserve">ergo
              <lb/>
            ex æ quali id, quod relinquitur ex duabus tertiis quadrati
              <lb/>
            b c, demptis ab ipſis quadrati a d duabus tertiis, ad tertiã
              <lb/>
            partem quadrati b c, ut _k_ h ad h f: </s>
            <s xml:id="echoid-s5135" xml:space="preserve">& </s>
            <s xml:id="echoid-s5136" xml:space="preserve">ad portionem eiuſdẽ
              <lb/>
            tertiæ partis, ad quam unà cum ipſa portione, duplam pro
              <lb/>
            portionem habeat eius, quæ eſt quadrati b c ad quadratũ
              <lb/>
            a d, ut K 1 ad 1 h. </s>
            <s xml:id="echoid-s5137" xml:space="preserve">habet enim _K_l ad 1 h ean dem proportio-
              <lb/>
            nem, quam conoidis portio b g c ad portionem a g d: </s>
            <s xml:id="echoid-s5138" xml:space="preserve">por-
              <lb/>
            tio autem b g c ad portionem a g d duplam proportionem
              <lb/>
            habet eius, quæ eſt baſis b c ad baſim a d: </s>
            <s xml:id="echoid-s5139" xml:space="preserve">hoc eſt quadrati
              <lb/>
            b c ad quadratum a d; </s>
            <s xml:id="echoid-s5140" xml:space="preserve">ut proxime demonſtratum eſt. </s>
            <s xml:id="echoid-s5141" xml:space="preserve">quare
              <lb/>
              <note position="right" xlink:label="note-0205-02" xlink:href="note-0205-02a" xml:space="preserve">30. huius</note>
            dempto a d quadrato à duabus tertiis quadrati b c, erit id,
              <lb/>
            quod relin quitur unà cum dicta portione tertiæ partis ad
              <lb/>
            reliquam eiuſdem portionem, ut el ad 1 f. </s>
            <s xml:id="echoid-s5142" xml:space="preserve">Cum igitur cen-
              <lb/>
            trum grauitatis fruſti a b c d ſit l, à quo axis e f in eam, quã
              <lb/>
            diximus, proportionem diuidatur; </s>
            <s xml:id="echoid-s5143" xml:space="preserve">conſtat uerũ eſſe illud,
              <lb/>
            quod demonſtrandum propoſuimus.</s>
            <s xml:id="echoid-s5144" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div288" type="section" level="1" n="97">
          <head xml:id="echoid-head104" xml:space="preserve">FINIS LIBRI DE CENTRO
            <lb/>
          GRAVITATIS SOLIDORVM.</head>
          <p>
            <s xml:id="echoid-s5145" xml:space="preserve">Impreſſ. </s>
            <s xml:id="echoid-s5146" xml:space="preserve">Bononiæ cum licentia Superiorum.</s>
            <s xml:id="echoid-s5147" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>