Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[21. ARCHIMEDIS DE IIS QVAE VEHVNTVR IN AQVA LIBER SECVNDVS. CVM COMMENTARIIS FEDERICI COMMANDINI VRBINATIS. PROPOSITIO I.]
[22. PROPOSITIO II.]
[23. COMMENTARIVS.]
[24. PROPOSITIO III.]
[25. PROPOSITIO IIII.]
[26. COMMENTARIVS.]
[27. PROPOSITIO V.]
[28. COMMENTARIVS.]
[29. PROPOSITIO VI.]
[30. COMMENTARIVS.]
[31. LEMMAI.]
[32. LEMMA II.]
[33. LEMMA III.]
[34. LEMMA IIII.]
[35. PROPOSITIO VII.]
[36. PROPOSITIO VIII.]
[37. COMMENTARIVS.]
[38. PROPOSITIO IX.]
[39. COMMENTARIVS.]
[40. PROPOSITIO X.]
[41. COMMENTARIVS.]
[42. LEMMA I.]
[43. LEMMA II.]
[44. LEMMA III.]
[45. LEMMA IIII.]
[46. LEMMA V.]
[47. LEMMA VI.]
[48. II.]
[49. III.]
[50. IIII.]
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="62">
          <p>
            <s xml:space="preserve">
              <pb file="0114" n="114" rhead="FED. COMMANDINI"/>
            tes æqueponderantes ipſam diuidet.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">2 Priſmatis, cylindri, & </s>
            <s xml:space="preserve">portionis cylindri axem
              <lb/>
            appello rectam lineam, quæ oppoſitorum plano-
              <lb/>
            rum centra grauitatis coniungit.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">3 Pyramidis, coni, & </s>
            <s xml:space="preserve">portionis coni axem dico li
              <lb/>
            neam, quæ à uertice ad centrum grauitatis baſis
              <lb/>
            perducitur.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">4 Si pyramis, conus, portio coni, uel conoidis ſe-
              <lb/>
            cetur plano baſi æquidiſtante, pars, quæ eſt ad ba-
              <lb/>
            ſim, fruſtum pyramidis, coni, portionis coni, uel
              <lb/>
            conoidis dicetur; </s>
            <s xml:space="preserve">quorum plana æquidiſtantia,
              <lb/>
            quæ opponuntur ſimilia ſunt, & </s>
            <s xml:space="preserve">inæqualia: </s>
            <s xml:space="preserve">axes
              <lb/>
            uero ſunt axium figurarum partes, quæ in ipſis
              <lb/>
            comprehenduntur.</s>
            <s xml:space="preserve"/>
          </p>
        </div>
        <div type="section" level="1" n="63">
          <head xml:space="preserve">PETITIONES.</head>
          <p>
            <s xml:space="preserve">1 Solidarum figurarum ſimilium centra grauita-
              <lb/>
            tis ſimiliter ſunt poſita.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">2 Solidis figuris ſimilibus, & </s>
            <s xml:space="preserve">æqualibus inter ſe
              <lb/>
            aptatis, centra quoque grauitatis ipſarum inter ſe
              <lb/>
            aptata erunt.</s>
            <s xml:space="preserve"/>
          </p>
        </div>
        <div type="section" level="1" n="64">
          <head xml:space="preserve">THEOREMA I. PROPOSITIO I.</head>
          <p>
            <s xml:space="preserve">Omnis figuræ rectilineæ in circulo deſcriptæ,
              <lb/>
            quæ æqualibus lateribus, & </s>
            <s xml:space="preserve">angulis contine-</s>
          </p>
        </div>
      </text>
    </echo>