Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[41. COMMENTARIVS.]
[42. LEMMA I.]
[43. LEMMA II.]
[44. LEMMA III.]
[45. LEMMA IIII.]
[46. LEMMA V.]
[47. LEMMA VI.]
[48. II.]
[49. III.]
[50. IIII.]
[51. V.]
[52. DEMONSTRATIO SECVNDAE PARTIS.]
[53. COMMENTARIVS.]
[54. DEMONSTRATIO TERTIAE PARTIS.]
[55. COMMENTARIVS.]
[56. DEMONSTRATIO QVARTAE PARTIS.]
[57. DEMONSTRATIO QVINT AE PARTIS.]
[58. FINIS LIBRORVM ARCHIMEDIS DE IIS, QVAE IN AQVA VEHVNTVR.]
[59. FEDERICI COMMANDINI VRBINATIS LIBER DE CENTRO GRAVITATIS SOLIDORV M.]
[60. CVM PRIVILEGIO IN ANNOS X. BONONIAE, Ex Officina Alexandri Benacii. M D LXV.]
[61. ALEXANDRO FARNESIO CARDINALI AMPLISSIMO ET OPTIMO.]
[62. FEDERICI COMMANDINI VRBINATIS LIBER DE CENTRO GRAVITATIS SOLIDORVM. DIFFINITIONES.]
[63. PETITIONES.]
[64. THEOREMA I. PROPOSITIO I.]
[65. THEOREMA II. PROPOSITIO II.]
[66. THE OREMA III. PROPOSITIO III.]
[67. THE OREMA IIII. PROPOSITIO IIII.]
[68. ALITER.]
[69. THEOREMA V. PROPOSITIO V.]
[70. COROLLARIVM.]
< >
page |< < (10) of 213 > >|
DE CENTRO GRA VIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="72">
          <pb o="10" file="0131" n="131" rhead="DE CENTRO GRA VIT. SOLID."/>
          <figure>
            <image file="0131-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0131-01"/>
          </figure>
        </div>
        <div type="section" level="1" n="73">
          <head xml:space="preserve">THE OREMA VIII. PROPOSITIO VIII.</head>
          <p>
            <s xml:space="preserve">Cuiuslibet priſmatis, & </s>
            <s xml:space="preserve">cuiuslibet cylindri, uel
              <lb/>
            cylindri portionis grauitatis centrum in medio
              <lb/>
            ipſius axis conſiſtit.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">Sit primum a f priſma æ quidiſtantibus planis contentũ,
              <lb/>
            quod ſolidum parallelepipedum appellatur: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">oppoſito-
              <lb/>
            rum planorum c f, a h, d a, f g latera bifariam diuidantur in
              <lb/>
            punctis k l m n o p q r s t u x: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per diuiſiones ducantur
              <lb/>
            plana κ n, o r, s x. </s>
            <s xml:space="preserve">communes autem eorum planorum ſe-
              <lb/>
            ctiones ſint lineæ y z, θ φ, χ ψ: </s>
            <s xml:space="preserve">quæ in puncto ω conueniãt.
              <lb/>
            </s>
            <s xml:space="preserve">erit ex decima eiuſdem libri Archimedis parallelogrammi
              <lb/>
            c f centrum grauitatis punctum y; </s>
            <s xml:space="preserve">parallelogrammi a h</s>
          </p>
        </div>
      </text>
    </echo>