Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[61.] ALEXANDRO FARNESIO CARDINALI AMPLISSIMO ET OPTIMO.
[62.] FEDERICI COMMANDINI VRBINATIS LIBER DE CENTRO GRAVITATIS SOLIDORVM. DIFFINITIONES.
[63.] PETITIONES.
[64.] THEOREMA I. PROPOSITIO I.
[65.] THEOREMA II. PROPOSITIO II.
[66.] THE OREMA III. PROPOSITIO III.
[67.] THE OREMA IIII. PROPOSITIO IIII.
[68.] ALITER.
[69.] THEOREMA V. PROPOSITIO V.
[70.] COROLLARIVM.
[71.] THEOREMA VI. PROPOSITIO VI.
[72.] THE OREMA VII. PROPOSITIO VII.
[73.] THE OREMA VIII. PROPOSITIO VIII.
[74.] THE OREMA IX. PROPOSITIO IX.
[75.] PROBLEMA I. PROPOSITIO X.
[76.] PROBLEMA II. PROPOSITIO XI.
[77.] PROBLEMA III. PROPOSITIO XII.
[78.] PROBLEMA IIII. PROPOSITIO XIII.
[79.] THEOREMA X. PROPOSITIO XIIII.
[80.] THE OREMA XI. PROPOSITIO XV.
[81.] THE OREMA XII. PROPOSITIO XVI.
[82.] THE OREMA XIII. PROPOSITIO XVII.
[83.] THEOREMA XIIII. PROPOSITIO XVIII.
[84.] THEOREMA XV. PROPOSITIO XIX.
[85.] THE OREMA XVI. PROPOSITIO XX.
[86.] THEOREMA XVII. PROPOSITIO XXI.
[87.] THE OREMA XVIII. PROPOSITIO XXII.
[88.] THEOREMA XIX. PROPOSITIO XXIII.
[89.] PROBLEMA V. PROPOSITIO XXIIII.
[90.] THEOREMA XX. PROPOSITIO XXV.
< >
page |< < (20) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div231" type="section" level="1" n="79">
          <p>
            <s xml:id="echoid-s3799" xml:space="preserve">
              <pb o="20" file="0151" n="151" rhead="DE CENTRO GRAVIT. SOLID."/>
            beat eam, quam χ τ ad τ f. </s>
            <s xml:id="echoid-s3800" xml:space="preserve">erit diuidendo ut χ f ad f τ, ita fi
              <lb/>
            gura ſolida inſcripta ad partem exceſſus, quæ eſtintra pyra
              <lb/>
            midem. </s>
            <s xml:id="echoid-s3801" xml:space="preserve">Cum ergo à pyramide, cuius grauitatis cẽtrum eſt
              <lb/>
            punctum f, ſolida figura inſcripta auferatur, cuius centrũ
              <lb/>
            τ: </s>
            <s xml:id="echoid-s3802" xml:space="preserve">reliquæ magnitudinis conſtantis ex parte exceſſus, quæ
              <lb/>
            eſtintra pyramidem, centrum grauitatis erit in linea τ f
              <lb/>
            producta, & </s>
            <s xml:id="echoid-s3803" xml:space="preserve">in puncto χ. </s>
            <s xml:id="echoid-s3804" xml:space="preserve">quod fieri non poteſt. </s>
            <s xml:id="echoid-s3805" xml:space="preserve">Sequitur
              <lb/>
            igitur, ut centrum grauitatis pyramidis in linea d e; </s>
            <s xml:id="echoid-s3806" xml:space="preserve">hoc
              <lb/>
            eſt in eius axe conſiſtat.</s>
            <s xml:id="echoid-s3807" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3808" xml:space="preserve">Sit conus, uel coni portio, cuius axis b d: </s>
            <s xml:id="echoid-s3809" xml:space="preserve">& </s>
            <s xml:id="echoid-s3810" xml:space="preserve">ſecetur plano
              <lb/>
            per axem, ut ſectio ſit triangulum a b c. </s>
            <s xml:id="echoid-s3811" xml:space="preserve">Dico centrum gra
              <lb/>
            uitatis ipſius eſſe in linea b d. </s>
            <s xml:id="echoid-s3812" xml:space="preserve">Sit enim, ſi fieri poteſt, centrũ
              <lb/>
              <figure xlink:label="fig-0151-01" xlink:href="fig-0151-01a" number="104">
                <image file="0151-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0151-01"/>
              </figure>
            e: </s>
            <s xml:id="echoid-s3813" xml:space="preserve">perq; </s>
            <s xml:id="echoid-s3814" xml:space="preserve">e ducatur e f axi æquidiſtans: </s>
            <s xml:id="echoid-s3815" xml:space="preserve">& </s>
            <s xml:id="echoid-s3816" xml:space="preserve">quam propor-
              <lb/>
            tionem habet c d ad d f, habeat conus, uel coni portio ad
              <lb/>
            ſolidum g. </s>
            <s xml:id="echoid-s3817" xml:space="preserve">inſcribatur ergo in cono, uel coni portione </s>
          </p>
        </div>
      </text>
    </echo>