Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[61.] ALEXANDRO FARNESIO CARDINALI AMPLISSIMO ET OPTIMO.
[62.] FEDERICI COMMANDINI VRBINATIS LIBER DE CENTRO GRAVITATIS SOLIDORVM. DIFFINITIONES.
[63.] PETITIONES.
[64.] THEOREMA I. PROPOSITIO I.
[65.] THEOREMA II. PROPOSITIO II.
[66.] THE OREMA III. PROPOSITIO III.
[67.] THE OREMA IIII. PROPOSITIO IIII.
[68.] ALITER.
[69.] THEOREMA V. PROPOSITIO V.
[70.] COROLLARIVM.
[71.] THEOREMA VI. PROPOSITIO VI.
[72.] THE OREMA VII. PROPOSITIO VII.
[73.] THE OREMA VIII. PROPOSITIO VIII.
[74.] THE OREMA IX. PROPOSITIO IX.
[75.] PROBLEMA I. PROPOSITIO X.
[76.] PROBLEMA II. PROPOSITIO XI.
[77.] PROBLEMA III. PROPOSITIO XII.
[78.] PROBLEMA IIII. PROPOSITIO XIII.
[79.] THEOREMA X. PROPOSITIO XIIII.
[80.] THE OREMA XI. PROPOSITIO XV.
[81.] THE OREMA XII. PROPOSITIO XVI.
[82.] THE OREMA XIII. PROPOSITIO XVII.
[83.] THEOREMA XIIII. PROPOSITIO XVIII.
[84.] THEOREMA XV. PROPOSITIO XIX.
[85.] THE OREMA XVI. PROPOSITIO XX.
[86.] THEOREMA XVII. PROPOSITIO XXI.
[87.] THE OREMA XVIII. PROPOSITIO XXII.
[88.] THEOREMA XIX. PROPOSITIO XXIII.
[89.] PROBLEMA V. PROPOSITIO XXIIII.
[90.] THEOREMA XX. PROPOSITIO XXV.
< >
page |< < of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div89" type="section" level="1" n="35">
          <p>
            <s xml:id="echoid-s1287" xml:space="preserve">
              <pb file="0056" n="56" rhead="ARCHIMEDIS"/>
            tur ex parte 1. </s>
            <s xml:id="echoid-s1288" xml:space="preserve">Quod ſi n o non ſecuerit ipſam ω k,
              <lb/>
            eadem nihilominus demonſtrabuntur.</s>
            <s xml:id="echoid-s1289" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div91" type="section" level="1" n="36">
          <head xml:id="echoid-head41" xml:space="preserve">PROPOSITIO VIII.</head>
          <p>
            <s xml:id="echoid-s1290" xml:space="preserve">
              <emph style="sc">Recta</emph>
            portio conoidis rectanguli, quando
              <lb/>
            axem habuerit maiorem quidem, quàm ſeſqui-
              <lb/>
            alterum eius, quæ uſque ad axem; </s>
            <s xml:id="echoid-s1291" xml:space="preserve">minorem ue-
              <lb/>
            ro, quàm ut ad eam, quæ uſque ad axem propor-
              <lb/>
            tionem habeat, quam quindecim ad quatuor: </s>
            <s xml:id="echoid-s1292" xml:space="preserve">ſi
              <lb/>
            in grauitate ad humidum habeat proportionem
              <lb/>
            minorem ea, quam quadratum, quod fit ab exceſ
              <lb/>
            ſu, quo axis maior eſt, quàm ſeſquialter eius, quæ
              <lb/>
            uſque ad axem, habet ad quadratum, quod ab
              <lb/>
            axe: </s>
            <s xml:id="echoid-s1293" xml:space="preserve">demiſſa in humidum, ita ut baſis ipſius humi
              <lb/>
            dum non contingat; </s>
            <s xml:id="echoid-s1294" xml:space="preserve">neque in rectum reſtitue-
              <lb/>
            tur, neque manebit inclinata, niſi quando axis
              <lb/>
            cum ſuperficie humidi angulum fecerit æqualẽ
              <lb/>
            ei, de quo infra dicetur.</s>
            <s xml:id="echoid-s1295" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s1296" xml:space="preserve">SIT portio qualis dicta eſt; </s>
            <s xml:id="echoid-s1297" xml:space="preserve">ſitque b d æqualis axi: </s>
            <s xml:id="echoid-s1298" xml:space="preserve">& </s>
            <s xml:id="echoid-s1299" xml:space="preserve">
              <lb/>
            b k quidem dupla ipſius _K_ d: </s>
            <s xml:id="echoid-s1300" xml:space="preserve">r _K_ uero æqualis ei, quæ uſ-
              <lb/>
            que ad axem: </s>
            <s xml:id="echoid-s1301" xml:space="preserve">& </s>
            <s xml:id="echoid-s1302" xml:space="preserve">ſit c b ſeſquialtera b r. </s>
            <s xml:id="echoid-s1303" xml:space="preserve">erit & </s>
            <s xml:id="echoid-s1304" xml:space="preserve">c d ipſius
              <lb/>
            _k_ r ſeſquialtera. </s>
            <s xml:id="echoid-s1305" xml:space="preserve">Quam uero portionem habet portio ad
              <lb/>
              <note position="left" xlink:label="note-0056-01" xlink:href="note-0056-01a" xml:space="preserve">A</note>
            humidum in grauitate, habeat quadratum f q ad quadra-
              <lb/>
            tum d b: </s>
            <s xml:id="echoid-s1306" xml:space="preserve">& </s>
            <s xml:id="echoid-s1307" xml:space="preserve">ſit f dupla ipſius q. </s>
            <s xml:id="echoid-s1308" xml:space="preserve">perſpicuum igitur eſt f q
              <lb/>
            ad d b proportionem minorem habere ea, quam habet
              <lb/>
            c b ad b d. </s>
            <s xml:id="echoid-s1309" xml:space="preserve">eſt enim c b exceſſus, quo axis maior eſt, quàm
              <lb/>
            ſeſquialter eins, quæ uſque ad axem: </s>
            <s xml:id="echoid-s1310" xml:space="preserve">quare f q minor eſt
              <lb/>
              <note position="left" xlink:label="note-0056-02" xlink:href="note-0056-02a" xml:space="preserve">B</note>
            </s>
          </p>
        </div>
      </text>
    </echo>