Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[71. THEOREMA VI. PROPOSITIO VI.]
[72. THE OREMA VII. PROPOSITIO VII.]
[73. THE OREMA VIII. PROPOSITIO VIII.]
[74. THE OREMA IX. PROPOSITIO IX.]
[75. PROBLEMA I. PROPOSITIO X.]
[76. PROBLEMA II. PROPOSITIO XI.]
[77. PROBLEMA III. PROPOSITIO XII.]
[78. PROBLEMA IIII. PROPOSITIO XIII.]
[79. THEOREMA X. PROPOSITIO XIIII.]
[80. THE OREMA XI. PROPOSITIO XV.]
[81. THE OREMA XII. PROPOSITIO XVI.]
[82. THE OREMA XIII. PROPOSITIO XVII.]
[83. THEOREMA XIIII. PROPOSITIO XVIII.]
[84. THEOREMA XV. PROPOSITIO XIX.]
[85. THE OREMA XVI. PROPOSITIO XX.]
[86. THEOREMA XVII. PROPOSITIO XXI.]
[87. THE OREMA XVIII. PROPOSITIO XXII.]
[88. THEOREMA XIX. PROPOSITIO XXIII.]
[89. PROBLEMA V. PROPOSITIO XXIIII.]
[90. THEOREMA XX. PROPOSITIO XXV.]
[91. THEOREMA XXI. PROPOSITIO XXVI.]
[92. THEOREMA XXII. PROPOSITIO XXVII.]
[93. PROBLEMA VI. PROPOSITIO XX VIII.]
[94. THE OREMA XXIII. PROPOSITIO XXIX.]
[95. THEOREMA XXIIII. PROPOSITIO XXX.]
[96. THEOREMA XXV. PROPOSITIO XXXI.]
[97. FINIS LIBRI DE CENTRO GRAVITATIS SOLIDORVM.]
< >
page |< < (6) of 213 > >|
DE IIS QVAE VEH. IN AQVA.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="15">
          <pb o="6" file="0023" n="23" rhead="DE IIS QVAE VEH. IN AQVA."/>
        </div>
        <div type="section" level="1" n="16">
          <head xml:space="preserve">COMMENTARIVS.</head>
          <p style="it">
            <s xml:space="preserve">AT ucro ea, quæ feruntur deorſum, ſecundum perpendicula-
              <lb/>
            rem, quæ per centrum grauit atis ipſorum ducitur, ſimiliter ferri,
              <lb/>
            uel tanquam notum, uel ut ab alijs poſitum prætermiſit.</s>
            <s xml:space="preserve"/>
          </p>
        </div>
        <div type="section" level="1" n="17">
          <head xml:space="preserve">PROPOSITIO VIII.</head>
          <p>
            <s xml:space="preserve">SI aliqua magnitudo ſolida leuior humido,
              <lb/>
              <anchor type="note" xlink:label="note-0023-01a" xlink:href="note-0023-01"/>
            quæ figuram portionis ſphæræ habeat, in humi-
              <lb/>
              <anchor type="note" xlink:label="note-0023-02a" xlink:href="note-0023-02"/>
            dum demittatur, ita vt baſis portionis non tan-
              <lb/>
            gat humidum: </s>
            <s xml:space="preserve">figura inſidebit recta, ita vt axis
              <lb/>
            portionis ſit ſecundum perpendicularem. </s>
            <s xml:space="preserve">Et ſi
              <lb/>
            ab aliquo inclinetur figura, vt baſis portionis hu-
              <lb/>
            midum cõtingat; </s>
            <s xml:space="preserve">non manebit inclinata ſi demit
              <lb/>
            tatur, ſed recta reſtituetur.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <note position="right" xlink:label="note-0023-01" xlink:href="note-0023-01a" xml:space="preserve">A</note>
            <note position="right" xlink:label="note-0023-02" xlink:href="note-0023-02a" xml:space="preserve">B</note>
          </div>
          <p>
            <s xml:space="preserve">[INTELLIGATVR quædam magnitudo, qualis
              <lb/>
              <anchor type="note" xlink:label="note-0023-03a" xlink:href="note-0023-03"/>
            dicta eſt, in humidum demiſſa: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ducatur planum per axẽ
              <lb/>
            portionis, & </s>
            <s xml:space="preserve">per terræ
              <lb/>
              <anchor type="figure" xlink:label="fig-0023-01a" xlink:href="fig-0023-01"/>
            centrum, ut ſit ſuperfi-
              <lb/>
            ciei humidi ſectio circũ
              <lb/>
            ferentia a b c d: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">figu-
              <lb/>
            ræ ſectio e f h circunfe-
              <lb/>
            rentia: </s>
            <s xml:space="preserve">ſit autem e h
              <lb/>
            recta linea; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">f t axis
              <lb/>
            portionis. </s>
            <s xml:space="preserve">Si igitur in-
              <lb/>
            clinetur figura, ita ut a-
              <lb/>
            xis portionis f t non ſit
              <lb/>
            ſecundum perpendicu-
              <lb/>
            larem. </s>
            <s xml:space="preserve">demonſtrandum eſt, non manere ipſam figu-
              <lb/>
            ram; </s>
            <s xml:space="preserve">ſed in rectum reſtitui. </s>
            <s xml:space="preserve">Itaque centrum ſphæræ eſt</s>
          </p>
        </div>
      </text>
    </echo>