Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[81.] THE OREMA XII. PROPOSITIO XVI.
[82.] THE OREMA XIII. PROPOSITIO XVII.
[83.] THEOREMA XIIII. PROPOSITIO XVIII.
[84.] THEOREMA XV. PROPOSITIO XIX.
[85.] THE OREMA XVI. PROPOSITIO XX.
[86.] THEOREMA XVII. PROPOSITIO XXI.
[87.] THE OREMA XVIII. PROPOSITIO XXII.
[88.] THEOREMA XIX. PROPOSITIO XXIII.
[89.] PROBLEMA V. PROPOSITIO XXIIII.
[90.] THEOREMA XX. PROPOSITIO XXV.
[91.] THEOREMA XXI. PROPOSITIO XXVI.
[92.] THEOREMA XXII. PROPOSITIO XXVII.
[93.] PROBLEMA VI. PROPOSITIO XX VIII.
[94.] THE OREMA XXIII. PROPOSITIO XXIX.
[95.] THEOREMA XXIIII. PROPOSITIO XXX.
[96.] THEOREMA XXV. PROPOSITIO XXXI.
[97.] FINIS LIBRI DE CENTRO GRAVITATIS SOLIDORVM.
< >
page |< < of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div158" type="section" level="1" n="52">
          <p>
            <s xml:id="echoid-s2195" xml:space="preserve">
              <pb file="0086" n="86" rhead="ARCHIMEDIS"/>
            ipſi my æquidiſtans. </s>
            <s xml:id="echoid-s2196" xml:space="preserve">Demonſtrandum eſt portionem in
              <lb/>
              <note position="left" xlink:label="note-0086-01" xlink:href="note-0086-01a" xml:space="preserve">G</note>
            humidum demiſſam, inclinatamq; </s>
            <s xml:id="echoid-s2197" xml:space="preserve">adeo, ut baſis ipſius nõ
              <lb/>
            contingat humidum, inclinatam conſiſtere ita, ut baſis ſu-
              <lb/>
            perficiem humidi nullo modo contingat: </s>
            <s xml:id="echoid-s2198" xml:space="preserve">& </s>
            <s xml:id="echoid-s2199" xml:space="preserve">axis cum ea fa
              <lb/>
            ciat angulum angulo χ maiorem. </s>
            <s xml:id="echoid-s2200" xml:space="preserve">Demittatur enim in hu-
              <lb/>
            midum, conſiſtatq; </s>
            <s xml:id="echoid-s2201" xml:space="preserve">ita, ut baſis ipſius in uno puncto cõtin
              <lb/>
            gat humidi ſuperficiem: </s>
            <s xml:id="echoid-s2202" xml:space="preserve">& </s>
            <s xml:id="echoid-s2203" xml:space="preserve">ſecta ipſa portione per axem,
              <lb/>
            plano ad humidi ſuperficiem recto; </s>
            <s xml:id="echoid-s2204" xml:space="preserve">ſuperficiei quidẽ por-
              <lb/>
            tionis ſectio ſit a p o l rectanguli coni ſectio: </s>
            <s xml:id="echoid-s2205" xml:space="preserve">ſuperficiei
              <lb/>
            humidi ſectio ſit a o: </s>
            <s xml:id="echoid-s2206" xml:space="preserve">axis autem portionis, & </s>
            <s xml:id="echoid-s2207" xml:space="preserve">ſectionis dia
              <lb/>
            meter b d: </s>
            <s xml:id="echoid-s2208" xml:space="preserve">& </s>
            <s xml:id="echoid-s2209" xml:space="preserve">ſecetur b d in punctis k r, ut dictum eſt: </s>
            <s xml:id="echoid-s2210" xml:space="preserve">du-
              <lb/>
              <note position="left" xlink:label="note-0086-02" xlink:href="note-0086-02a" xml:space="preserve">H</note>
            catur etiam p g æquidiſtans ipſi a o, quæ ſectionem a p o l
              <lb/>
            contingat in p: </s>
            <s xml:id="echoid-s2211" xml:space="preserve">atque ab eo puncto ducatur p t æquidiſtãs
              <lb/>
            ipſi b d; </s>
            <s xml:id="echoid-s2212" xml:space="preserve">& </s>
            <s xml:id="echoid-s2213" xml:space="preserve">p s ad b d perpendicularis. </s>
            <s xml:id="echoid-s2214" xml:space="preserve">Itaque quoniam
              <lb/>
            portio ad humidum in grauitate eam proportionem ha-
              <lb/>
            bet, quam qua-
              <lb/>
              <figure xlink:label="fig-0086-01" xlink:href="fig-0086-01a" number="53">
                <image file="0086-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0086-01"/>
              </figure>
            dratũ, quod fit
              <lb/>
            à linea χ ad qua
              <lb/>
            dratum b d: </s>
            <s xml:id="echoid-s2215" xml:space="preserve">quã
              <lb/>
            uero proportio
              <lb/>
            nem habet por-
              <lb/>
            tio ad humidũ,
              <lb/>
            eandem pars ip
              <lb/>
            ſius demerſa ha
              <lb/>
            bet ad totã por
              <lb/>
            tionẽ: </s>
            <s xml:id="echoid-s2216" xml:space="preserve">& </s>
            <s xml:id="echoid-s2217" xml:space="preserve">quam
              <lb/>
            pars demerſa ad
              <lb/>
            totam, eandem
              <lb/>
            habet quadra-
              <lb/>
            tum t p ad b d
              <lb/>
            quadratum: </s>
            <s xml:id="echoid-s2218" xml:space="preserve">erit
              <lb/>
            linea ψ æqualis
              <lb/>
            ipſi t p. </s>
            <s xml:id="echoid-s2219" xml:space="preserve">quare & </s>
            <s xml:id="echoid-s2220" xml:space="preserve">lineæ m n, p t; </s>
            <s xml:id="echoid-s2221" xml:space="preserve">itemq, portiones a m q,
              <lb/>
            a p o inter ſe ſunt æquales. </s>
            <s xml:id="echoid-s2222" xml:space="preserve">Quòd cumin portionibus
              <lb/>
              <note position="left" xlink:label="note-0086-03" xlink:href="note-0086-03a" xml:space="preserve">K</note>
            </s>
          </p>
        </div>
      </text>
    </echo>